CDMA – Краткое руководство –

Cdma – распространение спектрума

Вся техническая модуляция и демодуляция стремятся к большей мощности и / или эффективности полосы пропускания в канале с постоянным белым гауссовым аддитивным шумом. Поскольку полоса пропускания является ограниченным ресурсом, одной из основных целей проектирования всех схем модуляции является минимизация полосы пропускания, необходимой для передачи.

Преимущество метода расширенного спектра состоит в том, что многие пользователи могут одновременно использовать одну и ту же полосу пропускания, не мешая друг другу. Поэтому расширение спектра неэкономично, когда число пользователей меньше.

  • Расширенный спектр – это форма беспроводной связи, в которой частота передаваемого сигнала намеренно изменяется, что приводит к увеличению полосы пропускания.

  • Спред-спектр очевиден в теореме о пропускной способности канала Шеннона и Хартли.

    C = B × log 2 (1 S / N)

  • В данном уравнении `C ‘- это пропускная способность канала в битах в секунду (бит / с), которая является максимальной скоростью передачи данных для теоретической частоты ошибок по битам ( BER ). «B» – необходимая ширина полосы канала в Гц, а S / N – отношение мощности сигнала к шуму.

  • В расширенном спектре используются широкополосные шумоподобные сигналы, которые трудно обнаружить, перехватить или демодулировать. Кроме того, сигналы с расширенным спектром сложнее подавить (создать помехи), чем узкополосные сигналы.

  • Поскольку сигналы с расширенным спектром настолько широки, они передают с гораздо меньшей плотностью спектральной мощности, измеряемой в ваттах на герц, чем узкополосные передатчики. Сигналы с расширенным спектром и узкополосные сигналы могут занимать одну и ту же полосу практически без помех. Эта возможность является главной достопримечательностью для всего интереса к расширению спектра сегодня.

Расширенный спектр – это форма беспроводной связи, в которой частота передаваемого сигнала намеренно изменяется, что приводит к увеличению полосы пропускания.

Спред-спектр очевиден в теореме о пропускной способности канала Шеннона и Хартли.

C = B × log 2 (1 S / N)

В данном уравнении `C ‘- это пропускная способность канала в битах в секунду (бит / с), которая является максимальной скоростью передачи данных для теоретической частоты ошибок по битам ( BER ). «B» – необходимая ширина полосы канала в Гц, а S / N – отношение мощности сигнала к шуму.

В расширенном спектре используются широкополосные шумоподобные сигналы, которые трудно обнаружить, перехватить или демодулировать. Кроме того, сигналы с расширенным спектром сложнее подавить (создать помехи), чем узкополосные сигналы.

Поскольку сигналы с расширенным спектром настолько широки, они передают с гораздо меньшей плотностью спектральной мощности, измеряемой в ваттах на герц, чем узкополосные передатчики. Сигналы с расширенным спектром и узкополосные сигналы могут занимать одну и ту же полосу практически без помех.

Очки для запоминания –

  • Ширина полосы передаваемого сигнала больше минимальной ширины полосы информации, которая необходима для успешной передачи сигнала.

  • Некоторая функция, отличная от самой информации, обычно используется для определения результирующей передаваемой полосы пропускания.

Ширина полосы передаваемого сигнала больше минимальной ширины полосы информации, которая необходима для успешной передачи сигнала.

Некоторая функция, отличная от самой информации, обычно используется для определения результирующей передаваемой полосы пропускания.

Ниже приведены два типа методов расширения спектра.

  • Прямая последовательность и
  • Скачкообразная перестройка частоты

Прямая последовательность принята CDMA.

Код уолша

Коды Уолша чаще всего используются в ортогональных кодах приложений CDMA. Эти коды соответствуют строкам специальной квадратной матрицы, называемой матрицей Адамара. Для набора кодов Уолша длиной N он состоит из n строк, образующих квадратную матрицу из n × n кода Уолша.

Система IS-95 использует 64 функциональную матрицу Уолша 64. Первая строка этой матрицы содержит строку всех нулей, каждая из которых содержит различные комбинации битов 0 и 1. Каждая строка является ортогональной и имеет одинаковое представление для двоичных битов.

При реализации с системой CDMA каждый мобильный пользователь использует одну из 64 последовательностей строк в матрице в качестве расширяющего кода. И это обеспечивает нулевую взаимную корреляцию среди всех других пользователей. Эта матрица определяется рекурсивно следующим образом:

Где n представляет собой степень 2 и указывает на разные размеры матрицы W. Кроме того, n представляет логическую операцию NOT для всех битов в этой матрице. Три матрицы W 2, W 4 и W 8, соответственно, показывают функцию Уолша для размерности 2, 4 и 8.

Каждая строка 64 матрицы Уолша 64 соответствует номеру канала. Номер канала 0 отображается на первую строку матрицы Уолша, которая является кодом всех нулей. Этот канал также известен как пилотный канал и используется для формирования и оценки импульсной характеристики мобильного радиоканала.

Чтобы вычислить взаимную корреляцию между последовательностями, нам нужно будет преобразовать биты в матрицу, чтобы сформировать антитезу значений ± 1. Однако все пользователи в одном и том же канале CDMA могут быть синхронизированы с точностью до одного интервала микросхемы с использованием общей длинной последовательности PN. Он также функционирует как скремблер данных.

Код Уолша – это группа кодов расширения, имеющих хорошие свойства автокорреляции и плохие свойства взаимной корреляции. Коды Уолша являются основой систем CDMA и используются для разработки отдельных каналов в CDMA.

Для IS-95 доступно 64 кода.

Код «0» используется в качестве контрольного сигнала, а код «32» используется для синхронизации.

Коды с 1 по 7 используются для каналов управления, а остальные коды доступны для каналов трафика. Коды 2-7 также доступны для каналов трафика, если они не нужны.

Для cdma2000 существует множество кодов Уолша, длина которых варьируется в зависимости от разных скоростей передачи данных и коэффициентов распространения разных конфигураций радиосвязи.

Читайте про операторов:  Как оформить сим карту в турции, блог на Profit Real Estate

Один из 64 ортогональных битовых шаблонов со скоростью 1,2288 Мбит / с.

Коды Уолша используются для идентификации данных для каждой отдельной передачи. В прямой линии связи они определяют каналы прямого кода в пределах частоты CDMA.

В обратной линии связи все 64 кода используются каждым обратным каналом для передачи информации.

Посмотрите на следующую иллюстрацию. Он показывает, как мультиплексирование осуществляется с использованием кода Уолша.

Распространение кода

Взаимная корреляция

Корреляция – это метод измерения того, насколько точно данный сигнал соответствует желаемому коду. В технологии CDMA каждому пользователю назначается другой код, код, который назначается или выбирается пользователем, очень важен для модуляции сигнала, поскольку он связан с характеристиками системы CDMA.

Один из них получит наилучшую производительность, когда будет четкое разделение между сигналом желаемых пользователей и сигналами других пользователей. Это разделение осуществляется путем сопоставления кода требуемого сигнала, который был сгенерирован локально, и других принятых сигналов.

Если сигнал совпадает с кодом пользователя, функция корреляции будет высокой, и система сможет извлечь этот сигнал. Если желаемый код пользователя не имеет ничего общего с сигналом, корреляция должна быть как можно ближе к нулю (что исключает сигнал); также известный как взаимная корреляция.

Свойства самокорреляции и кода показаны на диаграмме, приведенной ниже, где показана корреляция между расширяющим кодом «A» и расширяющим кодом «B». В этом примере приведена вычисленная корреляция кода расширения “A (1010110001101001) и кода расширения” B “(1010100111001001), а при выполнении расчетов в следующем примере результат достиг 6/16.

Предпочтительные коды

Предпочтительный код используется в CDMA. Существуют разные коды, которые можно использовать в зависимости от типа системы CDMA. Существует два типа систем –

  • Синхронная (Синхронная) система и
  • Асинхронная (асинхронная) система.

В синхронной системе могут использоваться ортогональные коды (ортогональный код). В асинхронной системе для этого, например, используется псевдослучайный код (псевдослучайный шум) или код Голда.

Чтобы минимизировать взаимные помехи в DS-CDMA, следует выбирать коды расширения с меньшей взаимной корреляцией.

Синхронный DS-CDMA

  • Ортогональные коды являются подходящими. (Код Уолша и т. Д.)

Асинхронный DS-CDMA

  • Псевдослучайные коды шума (PN) / максимальная последовательность
  • Золотые коды

Синхронный DS-CDMA

Синхронные системы CDMA реализованы в многоточечных системах. Например, прямая связь (базовая станция с мобильной станцией) в мобильном телефоне.

Система синхронизации используется в системах «один ко многим» («точка-многоточечный»). Например, в данный момент времени в системе мобильной связи одна базовая станция (BTS) может связываться с несколькими сотовыми телефонами (прямая линия связи / нисходящая линия связи).

В этой системе сигнал передачи для всех пользователей может общаться синхронно. Значит, «Синхронизация» в этом пункте – это смысл, который можно отправить, чтобы выровнять верх каждого пользовательского сигнала. В этой системе можно использовать ортогональные коды, а также можно уменьшить взаимные помехи. И ортогональные коды, это знак, такой как взаимная корреляция, т.е. 0.

Асинхронный DS-CDMA

В асинхронной системе CDMA ортогональные коды имеют плохую взаимную корреляцию.

В отличие от сигнала от базовой станции, сигнал от мобильной станции к базовой станции становится асинхронной системой.

В асинхронной системе несколько возрастают взаимные помехи, но в ней используются другие коды, такие как код PN или код Голда.

Российские ученые: gsm медленно убивает горожан

Российские ученые: GSM медленно убивает горожанСодержание:

Перспективный CDMAКакой 3G-путь выбирает Россия?CDMA: контроль и экспертиза

Существующие темпы увеличения числа абонентов мобильной связи в нашей стране значительно опережают все оптимистические прогнозы. На этом фоне продолжаются исследования и сопровождающие их споры о влиянии мобильных телефонов на здоровье человека.

Исследования безопасности для человека мобильных телефонов ведутся уже давно. При этом в настоящее время во всем мире нет однозначного подхода1 к проблеме нормирования электромагнитного излучения носимого радиотелефона.

Перспективный CDMA

Научно-технический прогресс не стоит на месте. Если буквально 3-4 года назад в основном использовали сотовые телефоны мощностью 2-5 Вт, то в настоящее время сотовый телефон мощностью более одного ватта уже является редкостью.

Особую актуальность приобретает вопрос приоритетного развития систем сотовой радиосвязи, у которых при прочих равных потребительских свойствах, меньше уровень ЭМИ абонентской и базовой станции, а создание сети связи требует меньшего количества базовых станций. С этой точки зрения наиболее перспективной является система мобильной радиосвязи на основе стандарта СDMA.

В отечественной и зарубежной литературе имеется много публикаций, подчеркивающих экологичность стандарта CDMА. В то же время практически отсутствуют конкретные результаты исследований сравнительных эколого-технических характеристик абонентских и базовых станций этого стандарта с наиболее распространенным в России стандартом GSM.

Саратовский государственный университет совместно с компанией «Народный Телефон Саратов» (НТС) провел сравнительные исследования эколого-технических характеристик сетей сотовой радиотелефонной связи стандарта CDMA компании «НТС» и сетей операторов сотовой связи г. Саратова2, работающих по технологии GSM. Результаты этих работ представлены ниже.

Какой 3G-путь выбирает Россия?

Напомним, что до настоящего времени во всем мире с переменным успехом продолжается дискуссия о путях перехода к сотовым сетям третьего поколения , которые, кроме всего прочего должны предоставлять услуги высокоскоростного доступа в интернет.

Но в основном все сводится к двум вариантам : европейскому, который поддерживают страны Западной Европы и североамериканскому, который поддерживают США, Канада, Китай, Япония, страны Юго-Восточной Азии. По какому же пути пойдет Россия? Здесь у нас появился реальный шанс ликвидировать допущенное технологическое отставание.

Оба варианта создания сетей сотовой связи третьего поколения предполагают использовать технологию кодового разделения каналов. Еще в 1935 году выдающийся советский ученый Д. Агеев, почти на 10 лет раньше К. Шеннона, в своей работе «Линейные методы селекции и проблема пропускной способности эфира» теоретически обосновал технологию кодового разделения каналов.

Читайте про операторов:  ОПМС - Общество потребителей мобильной связи - CNews

Исторически военные связисты США и СССР применяли технологию кодового разделения каналов при создании закрытых систем связи. И в этом не имели себе равных в мире. Сейчас у нас появился реальный шанс ликвидировать допущенное технологическое отставание и занять достойное положение на рынке услуг сотовой связи.

Разработаны и готовятся к внедрению все новые и новые упоминаемые выше системы сотовой связи с кодовым разделением каналов (CDMA). Максимальная мощность ЭМИ носимого радиотелефона в таких системах не превышает 0,01 Вт (что меньше, чем у «практически безопасного» с этой точки зрения бесшнурового домашнего радиотелефона).

Проведенные на территории г. Саратова исследования также показали, что из всех применяемых технологий сотовой связи самой экологичной является технология CDMA. Однако темпы внедрении этого стандарта в нашей стране достаточно медленны, если не говорить о весьма странном курсе на сворачивание целого ряда этих сетей протокола IS-95 (массово используемого в Северной Америке и Юго-Восточной Азии), основанном не на технико-экономических, а скорее на политических факторах (но, отражающих жесткую конкурентную борьбу; политика, как известно, — это «концентрированная экономика»).

CDMA: контроль и экспертиза

Известно, что из всех видов мобильной связи сотовая является самой безопасной. Это обеспечивается достаточным количеством базовых станций и наличием системы регулирования мощности абонентского аппарата. Основным критерием экологичности абонентского аппарата становится эффективность работы системы регулирования мощности.

Для измерения уровня излучаемой мощности и контроля работы системы регулирования мощности абонентского аппарата был изготовлен макет лабораторной установки, функциональная схема которого представлена ниже.

Функциональная схема установки
для контроля работы системы регулировки мощности абонентского аппарата

Активирование абонентского аппарата в установке проводилось непосредственной ближайшей базовой станцией. Расстояние до базовой станции составляло 920 метров. Ориентировочное затухание в антенно-фидерном тракте — 4 дБ. Измерение мощности проводилось ваттметром М3-56.

На основании проведенных измерений было проведено моделирование изменения расстояния до базовой станции. Результаты моделирования представлены ниже.

Зависимость уровня излучаемой мощности от расстояния до базовой станции

Расчетная зависимость уровня ЭМИ, действующего на абонента, от расстояния до базовой станции

При проведении моделирования предполагалась, что связь абонентского аппарата осуществляется с сектором базовой станции при расхождении азимутов направления диаграммы направленности сектора и направления на точку измерения 9-100. По углу места точка измерений находится практически в центре диаграммы направленности антенны сектора. Предполагалась квадратичная зависимость затухания сигнала от расстояния.

При проведении аналогичных измерений с абонентским аппаратом стандарта GSM активирование радиотелефона проводилось базовой станцией «Би-лайн», находящейся на расстоянии менее 500 метров от точки измерений.

Из сопоставления данных об уровне ЭМИ в реальных условиях города и данных о плотности потока мощности сотовых радиотелефонов, полученных в лабораторных условиях, работы, видно, что они практически одинаковы. Исходя из этого, был сделан вывод о том, что условия, смоделированные в лаборатории, максимально близки (с определённой долей вероятности) к реальным условиям городской застройки.

Здесь следует отметить, что проведенные в рамках работы измерения уровня ЭМИ абонентских аппаратов количественно и качественно совпадают с результатами измерений Центра электромагнитной безопасности3.

В процессе выполнения работы проведены измерения уровней электромагнитного излучения около 700 абонентских станций. Статистическая обработка результатов представлена в таблице (см. ниже)

Результаты измерений уровней ЭМИ
абонентских аппаратов на территории 6 корпуса Саратовского госуниверситета

Результаты инструментальных измерений уровня ЭМИ абонентских станций в зависимости от расстояния до базовой станции приведены в таблице ниже.

Зависимость уровня ЭМИ абонентского аппарата
от расстояния до базовой станции

Обобщенные результаты выполненных Центром электоромагнитной безопасности при ГНЦ «Биофизика» измерений плотности потока электромагнитной энергии, создаваемой базовыми станциями сотовой связи всех стандартов, приведены в таблице ниже.

Обобщенные значения плотности потока электромагнитной энергии ЭМП базовых станций сотовой связи

ЗначенияЗначение плотности потока электромагнитной энергии, мкВт/см2
По всем точкам измеренияПомещения зданийПрилегающая селитебная территорияУ антенн (до 2 м)На крышах зданий
Среднее (p < 0,05)1,44 ± 0,100,32±0,060,65±0,043,45±1,041,34±0,16
Минимальное< 0,17< 0,17< 0,170,60< 0,17
Максимальное31,203,214,6331,205,20

Обобщенные данные результатов измерений ЭМП прочих источников радиочастотного диапазона показывают, что тенденция, отражающая наличие максимальных интенсивностей ЭМП у средств мощных теле- и радиопередатчиков и РЛС остается неизменной по сравнению с результатами тридцатилетней давности.

Однако, как было показано, сотовая связь является наиболее массовым по распространению и охвату населения источником ЭМП в радиочастотном диапазоне, при этом воздействие характеризуется относительно невысокими уровнями ЭМП, но существенно большей продолжительностью. Здесь следует говорить о многолетнем режиме постоянного воздействия на людей со стороны ЭМП, — прежде всего в городах.

Для достижения функциональных задач сотовой связи имеет место устойчивая тенденция увеличения зоны «радиопокрытия» и максимального приближения излучающих антенн к пользователю, что является ничем иным, как глобальным увеличением электромагнитного фона в окружающей среде в соответствующих радиочастотных диапазонах.

Рассматривая эколого-технические характеристики базовых станций, следует отметить значительные различия работы одиночной базовой станции и базовой станции в сети для стандартов CDMA и GSM. Отдельно расположенный сектор базовой станции GSM-900 способен одновременно обслуживать 7 абонентов.

Через отдельно расположенный сектор базовой станции IS-95 в полосе 1,23 МГц может передаваться до 61 информационного канала (плюс 3 канала служебных). При этом, как правило, используется 20-25 разговорных каналов. Если сравнить эти показатели с любой реальной сетью какого-нибудь другого стандарта, где нельзя использовать одинаковые частоты в соседних ячейках сети и надо заниматься частотным планированием, то при всех прочих равных условиях абонентская емкость сети CDMA получается выше.

Экспертиза безопасности: GSM или CDMA?

Экспертиза безопасности: GSM или CDMA?Все свойства, названные выше, определяют основные экономические выгоды от использования CDMA — увеличение перекрытия, обеспечиваемого ячейками при начале обслуживания и увеличение емкости сети и ячеек при запланированном уровне проникновения на рынок.

К примеру, «мягкое переключение» по меньшей мере, вдвое уменьшает количество базовых станций, которые необходимо развернуть в момент на начало обслуживания, а емкость сети при технологии CDMA (IS-95) увеличивается в 3-5 раз по сравнению с TDMA (D-AMPS, GSM, DCS) и в 10-20 раз по сравнению с аналоговым FDMA (AMPS, NMT).

Здесь следует отметить, что нельзя однозначно говорить о том, что у технологии CDMA выше и абонентская емкость, и помехоустойчивость. Строго говоря, это взаимоисключающие характеристики. Выше одно — ниже другое. И наоборот. Тем не менее, эксперименты показали, что (повторим это еще раз) при всех прочих равных условиях (размер зоны обслуживания, количество ячеек, популяция и распределение абонентов) указанные характеристики системы стандарта CDMA (IS-95) все же превосходят существующие стандарты технологии TDMA.

Читайте про операторов:  Примерная форма приказа об установлении лимита на использование мобильной связи в связи с производственной необходимостью (подготовлено экспертами компании "Гарант") | ГАРАНТ

В приведенной ниже таблице представлены сравнительные эколого-технические характеристики сетей сотовой связи оператора «Мегафон» (на первое полугодие 2002 г.) и ЗАО «НТС» (на второе полугодие 2003 г.)1. Для сравнения взята территория городов Саратова и Энгельса с пригородами.

Эколого-технические характеристики
базовых станций технологий GSM и CDMA

Наименование характеристикиGSMCDMA
Количество абонентов5000050000
Площадь обслуживаемой территории, км2490490
Количество секторов5730
Суммарная мощность передатчиков базовых станций? Вт 89075
Удельная мощность передатчиков базовых станций (в пересчете на одного абонента), мВт17,81,5
Территориальная плотность мощности базовых станций, Вт/км21,820,15
Средняя суммарная мощность передатчиков абонентский станций, Вт1250100
Суммарная мощность передатчиков базовых и абонентских станций2140175
Удельная мощность передатчиков базовых и абонентских станций (в пересчете на одного абонента), мВт42,83,5
Территориальная плотность мощности базовых и абонентских станций, Вт/км24,40,36

Полученные результаты показывают, что в зоне уверенного приема уровень ЭМИ абонентских аппаратов CDMA на 10-15 дБ меньше, чем у абонентских аппаратов стандарта GSM.

Столь значительные различия эколого-технических характеристик радиотелефонов стандартов GSM и CDMA частично могут быть объяснены техническими характеристиками абонентских и базовых станций (3-4 дБ), а также технологией передачи сигнала. Во многом же это объясняется тем, что технология CDMA протокола IS-95 предполагает жесткую, не зависящую от оператора, связь уровня мощности и принимаемого сигнала радиотелефона.

Технические требования к абонентскому аппарату стандарта GSM (РД 45.187-2001 Минсвязи) регламентируют лишь качественные требования к системе регулировки мощности и даже допускают возможность отключения. Некоторые операторы пытаются компенсировать недостатки частотно-территориального планирования сети сотовой радиосвязи (особенно на первом этапе ее развертывания) изменением параметров системы регулирования мощности.

При проведении исследований были проведены измерения уровня электромагнитного излучения радиотелефонов, принадлежащих студентам СГУ. Статистическая обработка результатов измерений уровня ЭМИ абонентских аппаратов позволила определить средний уровень облучения абонента. Результаты представлены на диаграмме.

Плотность ЭМИ

Следует обратить внимание на то, что разброс параметров ЭМИ всех радиотелефонов стандарта CDMA лежал в пределах погрешности измерений и статистической погрешности. Так, при проведении измерений на территории СГУ уровень ЭМИ абонентских аппаратов стандарта CDMA лежал в пределах 2-3 мкВт/см2.

Проведенные исследования2 позволили сформулировать основные эколого-технические преимущества стандарта CDMA.

  1. Уровень электромагнитного излучения в режиме без звуковой нагрузки не превышает уровень электромагнитного излучения практически безопасного бесшнурового радиотелефона при удалении от базовой станции на расстоянии до 12 км, с максимальной звуковой нагрузкой — до 6 км.
  2. Особенно проявляются преимущества радиотелефонов CDMA на расстояниях до 10 км, где по статистике расположено наибольшее количество абонентов (уровень электромагнитного излучения в среднем меньше, чем у радиотелефонов с временным разделением каналов в 10 раз).
  3. Значительно выше полученный в результате исследований при конкретных условиях измерений динамический диапазон работы системы регулировки мощности (10 дБ и 40 дБ соответственно).
  4. Более эффективна система регулирования мощности от уровня голосовой нагрузки.
  5. Радиотелефон стандарта GSM выходит на полную мощность на расстоянии 10 км от базовой станции — CDMA на расстоянии 40 км.
  6. Организация сети сотовой связи в стандарте CDMA требует меньшего количества базовых станций, чем в стандарте GSM, при одинаковой площади зоны обслуживания и абонентской емкости. Так, территории городов Саратова и Энгельса обслуживают 12 базовых станций стандарта CDMA мощностью 7,5 Вт. Для обслуживания аналогичной территории оператор стандарта GSM использует 28 базовых станций мощностью 60-80 Вт.

Управление питанием обратной линии связи

В дополнение к эффекту ближнего расстояния, описанному выше, непосредственной проблемой является определение мощности передачи мобильного устройства, когда оно впервые устанавливает соединение. До тех пор, пока мобильное устройство не вступит в контакт с базовой станцией, оно не имеет представления о количестве помех в системе.

Если он пытается передать большую мощность, чтобы обеспечить контакт, то он может создавать слишком много помех. С другой стороны, если мобильная станция передает меньше энергии (чтобы не мешать другим мобильным соединениям), мощность не может соответствовать E b / N 0, как требуется.

Как указано в стандартах IS-95, мобильное устройство действует, когда оно хочет попасть в систему, оно отправляет сигнал, называемый доступом .

В CDMA мощность передачи каждого пользователя распределяется мощностью управления для достижения той же мощности (Pr), которая принимается базовой станцией / BTS с помощью зонда доступа с низкой мощностью. Мобильная станция отправляет свой первый запрос доступа, затем ждет ответа от базовой станции. Если он не получает ответа, то второй запрос доступа отправляется с более высокой мощностью.

Процесс повторяется до тех пор, пока базовая станция не ответит. Если сигнал, на который отвечает базовая станция, имеет высокий уровень, то мобильная станция соединяется с базовой станцией, которая находится ближе к мобильной ячейке с низкой мощностью передачи.

Описанный выше процесс называется управлением мощностью без обратной связи, поскольку он управляется только самой мобильной станцией. Управление мощностью в разомкнутом контуре начинается, когда первая мобильная станция пытается связаться с базовой станцией.

Этот регулятор мощности используется для компенсации медленных эффектов затенения переменных. Однако, поскольку задняя и прямая линии связи находятся на разных частотах, оценка мощности передачи не дает точного решения для управления мощностью из-за потерь в тракте к передней части базовой станции. Это управление мощностью не срабатывает или слишком медленно для быстрых каналов Рэлея.

Мощность управления с обратной связью используется для компенсации быстрого изменения цвета Рэлея. На этот раз мощность мобильной передачи контролируется базовой станцией. Для этого базовая станция постоянно контролирует качество сигнала обратной линии связи.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector