Почему связь пропадает?
Тем не менее, даже несмотря на хорошее покрытие, связь иногда пропадает, а звонок прерывается. Почему так происходит?
На самом деле есть всего две основные причины.
https://www.youtube.com/watch?v=4HfABc0hdwA
Во-первых, каким бы хорошим ни было покрытие, всё равно будут возникать мертвые зоны. Поэтому часто кроме больших базовый станций с большими антеннами операторы устанавливают направленные антенны с покрытием до 1 метра.
- Микроячейка -> менее 2 километров,
- Picocell -> менее 200 метров,
- Фемтосота -> около 10 метров,
- Attocell -> 1–4 метра
Но даже в этих случаях возможны прерывания связи из-за помех.
Ну и самое главное, базовая станция может быть просто перегружена. Ведь несмотря на то, что одновременно к сети могут быть подключены миллионы абонентов. Одновременно один сектор БС может обслуживать всего лишь до 72 звонков. При этом БС может состоять из 6 секторов итого всего одновременных 432 звонка на одну БС. Поэтому в определенные моменты, к примеру в канун Нового Года, могут происходить перегрузы.
Что такое базовая станция и как она работает
Базовой станцией называется комплекс специальной радиопередающей аппаратуры, к которой относятся пе6редатчики, приёмники и ретрансляторы, которые осуществляют связь с мобильным устройством абонента. Каждая базовая станция стандарта GSM рассчитана на 12 передатчиков, каждый из которых может поддерживать связь между 8 разговаривающими абонентами. Комплекс таких станций, расположенных рядом, образует так называемую соту.
Базовые станции соединяются со специальным коммутатором посредством контроллёра базовых станций. Коммутатор и контролёр устанавливаются в одном помещении и соединяются прямой оптической линией. Подключение проводится через транспортную сеть, которая работает на базе радиорелейных, медных и волоконно-оптических линий.
В ряде стран мобильные вышки оригинально маскируют под деревья и иную растительность, что позволяет не нарушать общий пейзаж.
Зона покрытия каждой отдельно взятой базовой станции напрямую зависит от высоты установки антенны, рельефа населённого пункта и различных препятствий на пути к мобильному устройству абонента. В результате постепенного роста абонентской базы максимальной пропускной способности базовой станции может не хватать, в таком случае при попытке позвонить абонент видит на экране уведомление, что сеть занята. если такие случаи возникают часто, то оператор может принять решение, установить дополнительные мобильные вышки в местах повышенной нагрузки.
В городских условиях иногда встречаются такие участки, где телекоммуникационной компании требуется локально подключить определённый объект с большим количеством трафика. Сюда относятся станции метро, крупные городские улицы и крупные торговые комплексы.
Когда необходимо обеспечить качественное покрытие внутри закрытых зданий, используются небольшие пикосотовые базовые станции.
1990-е годы. мобильные данные: от смс-сообщений до интернета на скорости до 384 кбит/с
Сети 2G сделали мобильную связь по-настоящему массовой. Наши первые моноблоки и раскладушки работали по стандарту второго поколения — GSM (Global System for Mobile, глобальный стандарт мобильной связи).
Передача сигнала стала цифровой: голоса абонентов перед пересылкой преобразовывались в цифровые данные, и их уже нельзя было перехватить с помощью обычной рации. В сетях появился роуминг: операторы договорились передавать друг другу звонки своих клиентов, и отчасти поэтому стандарт назвали «глобальным». В этом же поколении появился и мобильный интернет.
Но главное — оборудование второго поколения обслуживало еще больше людей, и на этом стоит остановиться подробнее. В сетях 1G абоненты делили радиоэфир по территориальному принципу: распределялись по сотам. Каждая базовая станция обслуживала до нескольких десятков абонентов, выдавая каждому из них свою пару радиочастот: одну на передачу и одну на прием.
В технологии второго поколения заработал дополнительный принцип деления — по времени, или Time Division Multiple Access (TDMA). Внутри каждой частоты базовая станция выделяет восемь временных слотов и распределяет их между абонентами.
Телефон говорящего преобразует голос в цифровые данные и пересылает их часть в отведенный момент времени. Затем делает паузу, уступая другим, а когда вновь настает его очередь, досылает оставшуюся часть. Аппарат собеседника считывает информацию из нужных слотов, сшивает цифровые данные и восстанавливает из них голос.
Раз соединение стало цифровым, неудивительно, что даже первые аппараты второго поколения могли передавать не только голос, но и данные: СМС-сообщения. Поздние версии 2G-сетей позволяли выходить в интернет со скоростью до 384 кбит/с. Однако до современных стриминговых скоростей мобильного интернета было еще далеко.
2000-е годы. мобильные данные: от 2 до 14,7 мбит/с
В сетях третьего поколения интернет стал по-настоящему широкополосным. Часто под этим термином понимают просто высокую скорость передачи данных мобильного интернета. В более узком смысле слово «широкополосный» подразумевает, что по одному носителю передается сразу несколько потоков информации. Например, единственный провод используется для голосовой связи и интернета одновременно.
Широкополосность тесно связана с понятием модуляции, которую проще объяснить на примере FM-радио. В эфире передается музыка, то есть звук. Человек воспринимает на слух сигналы с частотой от 20 Гц до 20 000 Гц (1 Гц — одно колебание в секунду).
Однако частота радиоволн в FM-диапазоне намного выше: в районе 100 МГц (миллионов герц). Чтобы радиочастота (несущая) передавала звук, ее модулируют, то есть изменяют: когда уровень звукового сигнала повышается, увеличивается частота несущей, и наоборот.
Частота несущей радиоволны колеблется в пределах 180 кГц. Этой полосы пропускания (bandwidth) хватает, чтобы приемник извлек из нее качественный звук. Аббревиатура FM, собственно, и означает частотную модуляцию — Frequency Modulation.
Звук, который мы слышим по радио, устроен куда сложнее и содержит больше информации, чем цифровой сигнал — последовательность нулей и единиц. Однако, используя продвинутые алгоритмы модуляции, можно упаковать в несущую волну сразу много цифровых потоков, то есть сделать сигнал широкополосным.
В сетях третьего поколения, вместо того чтобы делить частотный диапазон на полосы по 25 кГц (2G FDMA) между абонентами, им дали возможность совместно использовать «магистраль» шириной в 1,23 МГц, то есть в пятьдесят раз больше.
Для совместного доступа применили технологию с разделением по коду: CDMA (Code Division Multiple Access). По каналу пришлось передавать значительное количество «лишней» информации (псевдослучайный код), но результат того стоил: скорость мобильного интернета многократно возросла.
2022-е годы. мобильные данные: от 300 мбит/с до 3 гбит/с
Сети четвертого поколения работают приблизительно в том же диапазоне частот, что и 3G и даже 2G (от 800 до 2600 МГц). Но если в начале 1990-х все наши мобильные данные сводились к эсэмэскам, то сегодня мы на лету смотрим видео высокого разрешения, редко сталкиваясь с недостаточной скоротью передачи данных.
Технология 4G выжала все соки из эфирного пространства, которое эксплуатировалось десятилетиями. Не зря четвертое поколение ассоциируется с аббревиатурой LTE — Long Term Evolution, или долговременное развитие.
Радиоволны, подобно волнам на поверхности воды, могут взаимодействовать с окружающими предметами и друг с другом. Они отражаются от зданий, рассеиваются, проходя сквозь стены, и даже искажают соседние волны. Чтобы волны соседних полос не мешали друг другу, в технологиях FDMA и CDMA между ними оставляли защитный диапазон.
MIMO расшифровывается как Multiple Input Multiple Output — «множественные входы и множественные выходы». Базовая станция посылает сигнал сразу с двух или более антенн, а мобильное устройство принимает соответственно двумя или более антеннами (да, все они помещаются в компактном корпусе).
За технологией OFDMA (O здесь означает «ортогональный») стоит сложная математика. Но вкратце суть ее в том, что отведенная одному абоненту полоса частот (несущая) разбивается на множество (до 256) поднесущих. Их частотные спектры пересекаются, и они непременно мешали бы друг другу, если бы не были филигранно синхронизированы по времени. В тот момент, когда поднесущая достигает пика мощности, ее ближайшие соседки всегда слабы.
В сетях 4G ресурсы сети используются максимально гибко. Система постоянно варьирует ширину полос, временные слоты и количество поднесущих в зависимости от аппетитов конкретных пользователей и качества радиосигнала. Устройство, которому требуется максимальная скорость, получает широкий канал, и наоборот — гаджеты, которым достаточно медленного интернета, не расходуют ресурсы сети понапрасну.
2020-е годы. мобильные данные: от 100 мбит/с до 20 гбит/с
Разработчики сетей четвертого поколения нарезали радиоэфир настолько мелкими порциями, что, кажется, вплотную приблизились к теоретическому лимиту ускорения связи. Поэтому впервые за 40 лет мобильные устройства выходят в новый частотный диапазон, который будет намного шире предыдущего.
Новые эфирные просторы обеспечат высокую скорость передачи данных: разработчики обещают, что полнометражные фильмы в высоком разрешении мы будем скачивать за считанные секунды. Однако скорость не главный параметр 5G. Важнее количество подключенных устройств: до миллиона на квадратный километр.
Сети пятого поколения создаются не только и не столько для людей, сколько для машин: домашней и промышленной автоматики, беспилотного транспорта, устройств интернета вещей. Стандарт текущего тысячелетия развивается экстенсивно: больше частот, больше базовых станций, больше антенн, больше сот.
Подробно о технологиях, на которых строятся сети пятого поколения, читайте в отдельном материале:
Msc/vlr
MSC — Mobile Switching Center, центр коммутации для мобильных абонентов;
VLR — Visitor Location Register, регистр положения гостевых абонентов.
Логически это 2 раздельных узла, но на практике, это реализовано в одном и том же устройстве.
VLR хранит в себе копию тех данных, которые записаны в HLR с той лишь разницей, что тут уже нет информации о том MSC, в зоне действия которого находится абонент. Здесь хранится информация о том, в зоне действия какого BSC находится данный абонент. Ну и здесь, естественно, хранятся данные только о тех абонентах, которые сейчас находятся в зоне действия того MSC, к которому подключен данный VLR.
MSC — классический коммутатор (конечно, не такой классический, который можно увидеть в музеях, где сидели бабушки и перетыкали проводки). Основные его функции — для исходящего вызова — определить куда переключить вызов, для входящего же соединения — определить на какой BSC отправить вызов.
Для выполнения этих то функций он и обращается в VLR за хранящейся там информацией. Здесь стоит заметить, что это плюс разнесения HLR и VLR — MSC не будет стучаться в HLR каждый раз, когда абоненту что-то нужно, а будет всё делать своими силами. Также MSC собирает данные для биллинга, далее эти данные скармливаются соответствующим системам.
Nodeb
NodeB, базовая станция в UMTS. Аналог BTS в GSM.
В целом, здесь описаны все жизненно важные элементы сети GSM/UMTS. Здесь я не упоминал ещё некоторые узлы, такие как SMS-C (SMS-Center), MMS-C (MMS-Center), WAP-GW (WAP-Gateway).
Если статья вызовет интерес, то в дальнейшем могу рассказать более подробно про сети радиодоступа GERAN и UTRAN, потому что я занимаюсь по большей части именно радийными вещами.
Pre-5g и 5g в россии
С 2022 года ПАО «МегаФон» и ПАО «Мобильные ТелеСистемы» тестирует Pre-5G совместно с международными компаниями Nokia и Huawei.
Главная сложность технологии 5G в том, что полоса сигнала гораздо шире, чем у предыдущих поколений сетей. Поэтому в России до сих пор не определили доступный диапазон частот для строительства сетей связи. Активно ведется дискуссия по поводу частот 3,4-3,8 ГГц.
Решением Государственной Комиссии по использованию радиочастот для тестирования инфраструктуры 5G в России выделен диапазон радиочастот 25,25-29,5 ГГц. Летом 2022 года в Москве начали тестирование пятого поколения сотовой связи. Первой экспериментальной площадкой выступит территория Морозовской детской городской клинической больницы.
Окончательно освободить место в радиочастотном спектре под 5G Правительство РФ планирует в течение 2,5 лет. А Huawei обещает смартфоны с поддержкой 5G не раньше 2021 года.
С июля 2022 также ведется разработка российского программного обеспечения для взаимодействия с технологией 5G.
Звонки
Но что именно происходит во время звонка? Опять же разберём всё по этапам.
В моем случае: вы набираете чей-то номер.
- Сначала ваш смартфон передает сигнал базовой станции.
- БС ловит сигнал, дешифрует его и начинает искать абонента, с которым мы хотим связаться: определяет в какой сети он находится, каким оператором обслуживается и прочее.
- После чего передает запрос на ближайшую к абоненту базовую станцию.
- Антенна БС начинает отправлять направленный сигнал и мы слышим звонок.
А те странные звуки, которые мы можем услышать, если телефон лежит рядом с колонками за пару секунд до звонка, это сигнал, который телефон передаёт обратно БС, сообщая, что он готов принять звонок.
Интернет
Примерно по такой же схеме можно не только совершать звонки, но и отправлять SMS, получать пуши и обмениваться пакетами данных через интернет-протокол.
Например, при помощи сотовой связи мы можем управлять девайсами интернета вещей или даже современными автомобилями.
Так вот, данный Kia Sorento непростой, в нем установлен комплекс телематики Kia Connect, который позволяют через приложение с вашего смартфона управлять различными функциями автомобиля.
Можно дистанционно запускать двигатель, настроить микроклимат, включить подогрев сидений и руля. Можно открывать/закрывать двери, включать аварийку или даже сигналить (что пригодится, если вы часто забываете, где припарковали авто или просто у вас странное чувство юмора).
Хотя чтобы определить, где авто, часто сигналить не придется, ведь геолокация автомобиля также отображается в приложении. Есть встроенная система навигации с пробками и погодой. Можно даже искать рестораны, заправки и отправлять прокладку маршрута с телефона на авто.
Что особенно круто, это функции безопасности. На смартфон приходят уведомления о срабатывании штатной сигнализации, телематика сообщает о незакрытых дверях и окнах. Есть автономный режим (без выхода в сеть) и «гостевой» режим. А в приложении можно посмотреть занимательную статистику.
И всё это работает по всей стране где бы вы не находились.
А всё благодаря встроенной симке и сотовым сетям, о работе которых мы сегодня и рассказали вам достаточно подробно и надеемся интересно!
Интернет вещей
Internet of items (IoT) – концепция, при которой техника решает задачи без участия человека или с минимальным его вмешательством. Яркими примерами IoT являются умный дом и беспилотный автомобиль.
Сети связи пятого поколения первоначально проектировались и для «интернета вещей». 5G станет первым стандартом, который объединит IoT и выведет роботизацию процессов на новый уровень. Благодаря снижению времени задержки 5G можно использовать даже на беспилотном транспорте, двигающемся со скоростью до 500 км/ час.
Скорость развития технологий растет ежегодно. Если от 1G до 2G прошло около 16 лет, то теперь смена поколений происходит раз в 7-10 лет. Важно правильно и своевременно использовать новые технологии и вовремя отказываться от старых.
История
В конце XIX века благодаря изобретениям Александра Степановича Попова и итальянца Гульельмо Маркони мир впервые начал передавать голос без проводов на дальние расстояния и через препятствия. Их устройства использовали в военной промышленности Российской Империи и на частных судах Европы, и США. Началась новая эра беспроводных технологий.
В 1946 году компании AT&T и Telephone Laboratories запустили первый проект, похожий на современные сотовые сети связи. Абонент выбирал канал, связывался с оператором, который и соединял его с нужным человеком. Общение абонентов было полудуплексным, т.е. люди не могли говорить одновременно.
Работу системы обеспечивало одно мощное радиоэлектронное средство, а телефон весил до 40 кг. Поэтому систему устанавливали в автомобили или стационарные строения. Только к 1964 году компании смогли автоматизировать проект и сделать общение по телефону полностью дуплексным, как сейчас.
Как происходит сам разговор
Сам телефонный разговор – это довольно сложный процесс. При разговоре голос абонента разбивается на небольшие отрезки продолжительностью 20 миллисекунд, а потом преобразовывается в особый цифровой сигнал. После этого данные кодируются при помощи особой системы. После этого зашифрованные сигналы подвергаются обработке повторно, это необходимо для устранения постороннего шума.
У многих сотовых операторов есть ограничение по длительности разговоров. Чаще всего общаться можно не больше 30 минут, после чего разговор автоматически прерывается и требуется перезванивать.
Современные мобильные телефоны служат не только для общения абонентов между собой. В этом небольшом устройстве есть встроенные часы, калькулятор, будильник, календарь и фонарик. Помимо этого смартфоны имеют фотоаппарат, с высоким разрешением камеры, выход в интернет, а также музыкальный плеер.
Как работает сотовая связь – как это сделано
Знаете ли вы, что происходит после того, как вы набрали номер друга на мобильном телефоне? Как сотовая сеть находит его в горах Андалусии или на побережье далекого острова Пасхи? Почему иногда неожиданно разговор прерывается? На прошлой неделе я побывал в компании Beeline и попытался разобраться, как устроена сотовая связь…
Большая площадь населенной части нашей страны покрыта Базовыми Станциями (БС). В поле они выглядят как красно-белые вышки, а в городе спрятаны на крышах нежилых домов. Каждая станция ловит сигнал от мобильных телефонов на удалении до 35 километров и общается с мобильным телефоном по служебным или голосовым каналам.
После того, как вы набрали номер друга, ваш телефон связывается с ближайшей к вам Базовой Станцией (БС) по служебному каналу и просит выделить голосовой канал. Базовая Станция отправляет запрос на контроллер (BSC), а тот переадресует его на коммутатор (MSC). Если ваш друг является абонентом той же сотовой сети, то коммутатор сверится с Home Location Register (HLR), выяснит, где в данный момент находится вызываемый абонент (дома, в Турции или на Аляске), и переведет звонок на соответствующий коммутатор, откуда тот его переправит на контроллер и затем на Базовую Станцию. Базовая Станция свяжется с мобильным телефоном и соединит вас с другом. Если ваш друг абонент другой сети или вы звоните на городской телефон, то ваш коммутатор обратится к соответствующему коммутатору другой сети. Сложно? Давайте разберемся подробнее. Базовая Станция представляет из себя пару железных шкафов, запертых в хорошо кондиционируемом помещении. Учитывая, что в Москве было на улице 40, мне захотелось немного пожить в этом помещении. Обычно, Базовая Станция находится либо на чердаке здания, либо в контейнере на крыше:
2.
Антенна Базовой Станции разделена на несколько секторов, каждый из которых «светит» в свою сторону. Вертикальная антенна осуществляет связь с телефонами, круглая соединяет Базовую Станцию с контроллером:
3.
Каждый сектор может обслуживать до 72 звонков одновременно, в зависимости от настройки и конфигурации. Базовая Станция может состоять из 6 секторов, таким образом, одна Базовая Станция может обслуживать до 432 звонков, однако, обычно на станции установлено меньшее количество передатчиков и секторов. Сотовые операторы предпочитают ставить больше БС для улучшения качества связи. Базовая Станция может работать в трех диапазонах: 900 МГц — сигнал на этой частоте распространяется дальше и лучше проникает внутрь зданий 1800 МГц — сигнал распространяется на более короткие расстояния, но позволяет установить большее количество передатчиков на 1 секторе 2100 МГц — Сеть 3G Вот так выглядит шкаф с 3G оборудованием:
4.
На Базовые Станции в полях и деревнях устанавливают передатчики 900 МГц, а в городе, где Базовые Станции натыканы как иглы у ежика, в основном, связь осуществляется на частоте 1800 МГц, хотя на любой Базовой Станции могут присутствовать передатчики всех трех диапазонов одновременно.
5.
6.
Сигнал частотой 900 МГц может бить до 35 километров, хотя «дальность» некоторых Базовых Станций, стоящих вдоль трасс, может доходить до 70 километров, за счет снижения числа одновременно обслуживаемых абонентов на станции в два раза. Соответственно, наш телефон с его маленькой встроенной антенной также может передавать сигнал на расстояние до 70 километров… Все Базовые Станции проектируются таким образом, чтобы обеспечить оптимальное покрытие радиосигналом на уровне земли. Поэтому, несмотря на дальность в 35 километров, на высоту полета самолетов радиосигнал просто не посылается. Тем не менее, некоторые авиакомпании уже начали устанавливать на своих самолетах маломощные базовые станции, которые обеспечивают покрытие внутри самолета. Такая БС соединяется с наземной сотовой сетью с помощью спутникового канала. Система дополняется панелью управления, которая позволяет экипажу включать и выключать систему, а также отдельные типы услуг, например, выключать голос на ночных рейсах. Телефон может измерять уровень сигнала от 32 Базовых Станций одновременно. Информацию о 6-ти лучших (по уровню сигнала) он отправляет по служебному каналу, и уже контроллер (BSC) решает, какой БС передать текущий звонок (Handover), если вы находитесь в движении. Иногда телефон может ошибиться и перебросить вас на БС с худшим сигналом, в этом случае разговор может прерваться. Также может оказаться, что на Базовой Станции, которую выбрал ваш телефон, все голосовые линии заняты. В этом случае разговор также прервется. Еще мне рассказали о так называемой «проблеме верхних этажей». Если вы живете в пентхаусе, то иногда, при переходе из одной комнаты в другую, разговор может прерываться. Это происходит потому, что в одной комнате телефон может «видеть» одну БС, а во второй — другую, если она выходит на другую сторону дома, и, при этом эти 2 Базовые Станции находятся на большом удалении друг от друга и не прописаны как «соседние» у сотового оператора. В этом случае передача звонка с одной БС на другую происходить не будет:
Связь в метро обеспечивается так же, как и на улице: Базовая Станция – контроллер – коммутатор, с той лишь разницей, что применяются там маленькие Базовые Станции, а в тоннеле покрытие обеспечивается не обычной антенной, а специальным излучающим кабелем. Как я уже писал выше, одна БС может производить до 432 звонков одновременно. Обычно этой мощности хватает за глаза, но, например, во время некоторых праздников БС может не справиться с количеством желающих позвонить. Обычно это случается на Новый Год, когда все начинают поздравлять друг друга. SMS передаются по служебным каналам. На 8 марта и 23 февраля люди предпочитают поздравлять друг друга с помощью SMS, пересылая смешные стишки, и телефоны зачастую не могут договориться с БС о выделении голосового канала. Мне рассказали интересный случай. Из одного района Москвы стали поступать жалобы от абонентов о том, что они не могут никуда дозвониться. Технические специалисты стали разбираться. Большинство голосовых каналов было свободно, а все служебные были заняты. Оказалось, что рядом с этой БС находился институт, в котором шли экзамены и студенты беспрерывно обменивались эсэмэсками. Длинные SMS телефон делит на несколько коротких и отправляет каждое отдельно. Сотрудники технической службы советуют отправлять такие поздравления с помощью MMS. Это будет быстрее и дешевле. С Базовой Станции звонок попадает на контроллер. Выглядит он так же скучно, как и сама БС — это просто набор шкафов:
7.
В зависимости от оборудования, контроллер может обслуживать до 60 Базовых Станций. Связь между БС и контроллером (BSC) может осуществляться по радиорелейному каналу либо по оптике. Контроллер осуществляет управление работой радиоканалов, в т.ч. контролирует передвижение абонента, передачу сигнала с одной БС на другую. Гораздо интереснее выглядит коммутатор:
8.
9.
Каждый коммутатор обслуживает от 2 до 30 контроллеров. Он занимает уже большой зал, заставленный различными шкафами с оборудованием:
10.
11.
12.
Коммутатор осуществляет управление трафиком. Помните старые фильмы, где люди сначала дозванивались до «девушки», а затем она уже соединяла их с другим абонентом, перетыкивая проводки? Этим же занимаются и современные коммутаторы:
13.
Для контроля за сетью у Билайна есть несколько автомобилей, которые они ласково называют «ежики». Они передвигаются по городу и измеряют уровень сигнала собственной сети, а также уровень сети коллег из «Большой Тройки»:
14.
Вся крыша такого автомобиля утыкана антеннами:
15.
Внутри стоит оборудование, осуществляющее сотни звонков и снимающее информацию:
16.
Круглосуточный контроль за коммутаторами и контроллерами осуществляется из Центра Управления Полетами Центра Контроля Сети (ЦКС):
17.
Существует 3 основных направления по контролю за сотовой сетью: аварийность, статистика и обратная связь от абонентов. Так же, как и в самолетах, на всем оборудовании сотовой сети стоят датчики, которые посылают сигнал в ЦКС и выводят информацию на компьютеры диспетчеров. Если какое-то оборудование вышло из строя, то на мониторе начнет «мигать лампочка». ЦКС также отслеживает статистику по всем коммутаторам и контроллерам. Он анализирует ее, сравнивая с предыдущими периодами (часом, сутками, неделей и т.д.). Если статистика какого-то из узлов стала резко отличаться от предыдущих показателей, то на мониторе опять начнет «мигать лампочка». Обратную связь принимают операторы абонентской службы. Если они не могут решить проблему, то звонок переводится на технического специалиста. Если же и он оказывается бессильным, то в компании создается «инцидент», который решают инженеры, занимающиеся эксплуатацией соответствующего оборудования. За коммутаторами круглосуточно следят по 2 инженера:
18.
На графике показана активность московских коммутаторов. Хорошо видно, что ночью практически никто не звонит:
19.
Контроль за контроллерами (простите за тавтологию) осуществляется со второго этажа Центра Контроля Сети:
22.
21.
Источник
Как устроена сотовая связь в россии
В связи с особенностями советской политики, с начала 90-ых годов Россия отставала и зачастую использовала вышедшую из эксплуатации технику сотовой связи США и других развитых стран. Сегодня отставание существенно сократилось. Как и в развитых странах, мы используем технологии 2G, 3G и 4G.
Какие перспективы развития мобильной связи
Дальнейшее развитие мобильной связи возможно по нескольким направлениям:
- создание принципиально новых технологий и протоколов передачи данных;
- доработка существующих стандартов передачи данных;
- разработка технологий и стандартов для «Интернета вещей».
С 2022 года в России и мире тестируют технологию Pre-5G. Скорость передачи данных во время экспериментальных замеров в России варьировалась от 4 до 35 Гбит/секунду.
В 2022 году Международный союз электросвязи разработал концепцию развитию сетей 5G IMT-2020. С тех пор полноценная инфраструктура пятого поколения появилась в Соединенных Штатах Америки, Китайской Народной Республике, Республике Корея, некоторых странах и городах Евросоюза.
Минимальная пропускная способность новой технологии в 136 раз выше максимальной для предыдущего поколения 4G. В тестовых сетях скорость передачи данных доходит до 25 Гбит/с. По оценкам специалистов, 5G позволит предоставить скорость в 100 Мбит/секунду для 1 миллиона устройств на 1 км².
Контроль качества
Для того чтобы не отстать от конкурентов, сотовые операторы постоянно совершенствуют своё оборудование и расширяют покрытие. Для того чтобы убедиться в качестве услуг, специальные мобильные комплексы операторов перемещаются по городам и оценивают связь.
На сайте Минкомсвязи России вы можете посмотреть, как работает сотовая связь в вашем населенном пункте. Выбирайте интересующие технологии и компании, смотрите зоны покрытия, наложенные на карту.
Маломощные базовые станции
Мобильные компании также используют мобильные ретрансляторы и фемтосоты – маломощные базовые станции. Благодаря этому удается поддерживать работу услуг сотовой связи в труднодоступных местах, например, в метро, больших зданиях или подвалах. Подобные устройства устанавливают, как по желанию оператора, так и по заказу со стороны.
Опорная сеть
Опорная сеть — ядро сетей сотовой связи. Название опорная — мой вольный перевод, в GSM эту часть сети называют сетью коммутации, в UMTS — Core Network, что по сути можно перевести как ядро сети. К этому ядру, как периферийные устройства к системному блоку, могут подключаться различные сети радиодоступа.
Опорная сеть на приведённой выше картинке разделена на 2 части — верхняя правая часть отвечает за голосовые соединения, или CS-соединения (Circuit Switch), нижняя правая часть отвечает за пакетные соединения, или же PS-соединения (Packet Switch).
Опорная сеть сосредоточена в одном или нескольких зданий, принадлежащих оператору сотовой связи, в больших машинных залах — проще говоря огроменнейшая серверная, где стоит большое количество шкафов оборудования, их ещё холодильниками иногда называют, потому что с виду очень похожи 🙂
Первые сети сотовой связи
В 70-х годах прошлого века компаниями-гигантами была устроена гонка технологий. Они пытались реализовать недавно выдвинутую идею сотового принципа организации сетей сотовой связи. Победу одержала Motorola. Первую базовую станцию на 30 абонентов смонтировали в США на крыше небоскреба. 3.04.
1973 глава подразделения по разработке мобильных устройств Motorola совершил первый звонок. Его мобильное устройство весило 1,15 кг, было похоже на кирпич, а заряда аккумулятора хватало на 20 минут общения. До 1983 года компания улаживала законодательные вопросы, дорабатывала телефон и устраняла выявленные недоработки. Первый телефон вышел в продажу под названием Motorola DynaTAC 8000X и стал самым мобильным для своего времени.
Первый звонок Мартин Купер совершил на номер стационарного телефона компании-конкурента Motorola — компании Bell Laboratories. Он сообщил, что звонит с первого в мире сотового телефона. Мистер Купер утверждал, что слышал, как скрипят зубы на другом конце линии.
В 80-е годы XX века активно использовали технологии, известные под общим названием 1G. Первую коммерческую сеть развернули японцы в 1979 году. Но к концу 80-ых, Европейский институт стандартизации электросвязи разработал стандарт 2G или GSM, который до сих пор использует 29% населения Земли.
В 2001 году в Японии, а в 2003 в Европе запустили технологии CDMA и UMTS, известные под общим наименованием 3G. Уже через 7 лет началось развитие сетей 4G/LTE. Технология была недоработана до конца, но ко второй половине этого десятилетия сотовые компании достигли первоначально заявленной пропускной способности сетей LTE – 1 Гбит/секунду.
Принцип работы мобильных устройств в сотовой сети
Мобильный телефон – это своеобразный приёмо-передатчик, который работает на одной из частот диапазона 850 МГц, 900 МГц, 1800 МГц и 1900МГц. При этом передача и приём сигнала разнесена по разным частотам. Вся система под названием GSM включает три основных компонента.
- Подсистема базовых станций;
- Подсистема коммуникации;
- Центр управления и обслуживания.
Если объяснять это простыми словами, то принцип работы такой. Мобильное устройство взаимодействует с сетью мобильных вышек или базовых станций. Такие вышки чаще всего устанавливают на специальных наземных вышках, крышах жилых домов, а также других арендованных зданий. Также они могут располагаться на промышленных трубах и трубах котельных.
Телефон сразу после включения и даже в выключенном состоянии , но с вставленным аккумулятором, постоянно сканирует эфир, в писках сигнала своей базовой станции. Этот сигнал определяется по особому идентификатору, который задаётся вставленной сим-картой.
Каждая сим-карта, вставленная в мобильное устройство, наделена своими уникальными идентификаторами IMSI. При регистрации мобильника в сети данные передаются на базовую станцию, а именно в центр идентификации. Далее этот центр передаёт на телефон некое секретное число, которое является своеобразным кодом и нужно для вычислений по особому алгоритму.
Для мобильных телефонов идентификатором является уникальный номер IMEI, состоящий из 15 цифр в десятичном формате.
IMEI хранится в памяти мобильного аппарата. Стоит знать, что в устаревших моделях мобильников этот номер нетрудно изменить при помощи специальной программы, в современных смартфонах эти данные дублируются. Один экземпляр хранится в памяти, которую можно изменять, а вот дубликат находится в памяти ОТР, которую перепрограммировать невозможно.
По IMEI любое мобильное устройство легко отследить в сети. Это очень полезная функция, так как при краже мобильного устройства его можно отследить и изъять у злоумышленника. Если же номер изменили, то шансы найти мобильник почти равны нулю.
Стоит знать, что IMEI может быть повреждён в случае сбоя программного обеспечения или неправильного обновления программы. В этом случае устройство становится непригодным для работы. Вот тут нужна помощь специалистов, чтобы восстановить всю информацию и вернуть работоспособность мобильнику.
Чтобы сотовый телефон работал, в него следует вставить сим-карту. После этого телефон начинает проверять доступность частот, которых около 160. Из них выбирается 6 наиболее мощных сигналов, и данные записываются на сим-карту.
После того, как абонент кому-то позвонил, мобильник передаёт информацию на базовую станцию с самым сильным сигналом. Оператор распознаёт симку и автоматически находит свободный канал для связи. Всё это занимает всего лишь несколько секунд.
Принцип работы сотовой связи
Доступность услуг мобильных компаний обеспечивают базовые станции. Каждая покрывает свою территорию – соту. Вы перемещаетесь между сотами, смартфон автоматически переключается между базовыми станциями и связь не обрывается.
Через ручные настройки смартфона можно подключиться к конкретной доступной базовой станции. К примеру, выезжая за границу Российской Федерации, вы можете продолжать выполнять звонки, отправлять SMS-сообщения и сидеть в интернете, используя исключительно российский базовые станции. Если вы отъедите слишком далеко от ближайшего российского передатчика, услуги перестанут работать. При этом смартфон не переключится на радиоэлектронные средства местных операторов, пока вы не переведете выбор сети в автоматический режим.
Сеть радиодоступа
Существующие сети радиодоступа у наших операторов — продукт долгой эволюции, поэтому они состоят из сети радиодоступа к GSM (GERAN — GSM EDGE Radio Access Network) и сеть радиодоступа к UMTS (UTRAN — UMTS Terrestrial Radio Access Network). Сверху слева на картинке вы видите GERAN, внизу слева, соответственно UTRAN.
Сеть радиодоступа — эта та паутина, которой охвачены огромные территории городов и открытых местностей, за счёт неё как раз и обеспечивается то огромное погрытие, которое предоставляют сети сотовой связи.
Состав и характеристики базовых станций
Базовая станция состоит из секторов антенно-фидерных устройств, радиорелейных линий, коммутационного оборудования, системы контроля климата и всепогодного корпуса.
Сектора передатчиков 2G-4G расположены по периметру базовых станций и обеспечиваю вас связью. Они развернуты на 45-120 градусов относительно друг друга, чтобы покрыть максимум территории по горизонтали и вертикали. Каждый сектор обслуживает до 72 звонков одновременно.
Все антенно-фидерные устройства сотовых компаний объедены в единую сеть с помощью оптоволоконных кабелей и радиорелейных линий. Последние позволяют без проводов соединять станции, находящиеся на расстоянии до 70 км друг от друга.
В каждой базовой станции предусмотрено место для коммутационного оборудования и системы контроля климата. Эта зона защищена металлическим корпусом. С годами он уменьшился с размеров вагона до небольшого всепогодного шкафа.
Сотовая связь в россии
Разработки систем сотовой связи велись по всему миру. СССР рассматривал их исключительно для военных целей. Поэтому только к концу 1991 году в Российской Федерации появились сети 1G. Вплоть до экономического кризиса конца 90-ых сотовую связь использовало менее 0,5% населения Российской Федерации.
Операторы брали не менее 50 центов за минуту разговора и тарифицировали даже входящие вызовы. Мобильные аппараты стоили слишком дорого. К примеру, телефон, по которому Анатолий Собчак впервые вызывал Сиэтл, обошелся в 5000$. Кризис совпал с падением цен на телефоны и услуги связи.
Россия сокращала технологическое отставание сотовой инфраструктуры. В 2003 году группа операторов перешла на устаревший в мире стандарт 3G – CDMA. В 2007 году началось строительство сетей связи другой технологии третьего поколения – UMTS. Она, в отличие от CMDA, востребована по всему миру, работает на больших скоростях передачи данных и может обслуживать большее число абонентов одновременно. В 2022 году началась тестовая эксплуатация 4G.
В 2022 году ООО «Т2 Мобайл» начал предоставлять услуги связи в Москве, не имея передатчиков 2 поколения, – только 3G и 4G.
Схематическое исполнение мобильных телефонов
Схема каждого мобильного телефона очень сложная. Так простому обывателю даже трудно представить, как можно на одном миллиметре процессора разместить миллионы транзисторов, пусть и миниатюрного размера. Так мало того, все эти детали должны обеспечит слаженную работу мобильного устройства.
Рассмотрим основные составляющие мобильных устройств и их предназначение.
- Процессор. На схемах он обозначен аббревиатурой CPU или RAPIDO. Именно эта деталь и является мозговым центром любого мобильника.
- Флешка. Это не что иное, как карта памяти. В схемах обозначается словом flash, но могут быть обозначения mem, memory. Чаще всего она прямоугольной формы, в зависимости от модели мобильного устройства может иметь разные габариты и объём памяти.
- Контролёр питания. Он может быть отмечен на схеме как betty, retu, tahvo или UEM. Это миниатюрные микросхемы квадратной формы.
- Передатчик и приёмник сигнала. Помечается на схеме как RF chip & GSM FEM. Такие передатчики могут быть похожи между собой, но у них отличаются последние цифры в маркировке.
- У некоторых мобильников предусмотрен терморезистор и предохранитель.
Большая часть современных мобильных телефонов может работать в различных стандартах. Это позволяет без проблем пользоваться услугами роуминга в сетях разных мобильных операторов.
Как только абонент пересекает границу, на его мобильном устройстве высвечивается уведомление, что он находится в роуминге. Стоит помнить, что за эту услугу чаще всего взимается довольно большая сумма.