Как работает сотовая связь которой пользуется весь мир | Пикабу

Как работает сотовая связь.

Читайте про операторов:  Подключить цифровое телевидение (ТВ) в г.Москва, домашнее цифровое телевидение HD от билайн

Маршрутизация вызовов.

Поговорим теперь, каким образом происходит маршрутизация входящих
вызовов мобильного телефона. Как и раньше, будем рассматривать наиболее
общий случай, когда абонент находится в зоне действия гостевой сети,
регистрация прошла успешно, а телефон находится в режиме ожидания.

При поступлении запроса (рис.2) на соединение от проводной телефонной
(или другой сотовой) системы на MSC домашней сети
(вызов “находит” нужный коммутатор по набранному номеру
мобильного абонента MSISDN, который содержит код
страны и сети).

Как работает сотовая связь которой пользуется весь мир | Пикабу

Рис.2 взаимодействие основных блоков сети при поступлении входящего вызова.

MSC пересылает в HLR номер (MSISDN)
абонента. HLR, в свою очередь, обращается с запросом
к VLR гостевой сети, в которой находится абонент.
VLR выделяет один из имеющихся в ее распоряжении
MSRN (Mobile Station Roaming Number – номер “блуждающей”
мобильной станции).

Идеология назначения MSRN очень
напоминает динамическое присвоение адресов IP при коммутируемом доступе
в Интернет через модем. HLR домашней сети получает

от VLR присвоенный абоненту MSRN
и, сопроводив его IMSI пользователя, передает коммутатору
домашней сети.

Заключительной стадией установления соединения является
направление вызова, сопровождаемого IMSI и MSRN,
коммутатору гостевой сети, который формирует специальный сигнал, передаваемый
по PAGCH (PAGer CHannel – канал вызова) по всей LA,
где находится абонент.

Маршрутизация исходящих вызовов не представляет с идеологической
точки зрения ничего нового и интересного. Приведу лишь некоторые из
диагностических сигналов (таблица 4), свидетельствующие о невозможности
установить соединение и которые пользователь может получить в ответ
на попытку установления соединения.

Таблица 4. основные диагностические сигналы об ошибке при установлении
соединения.

Немного истории

На заре развития мобильной связи (а было это не так давно – в начале
восьмидесятых) Европа покрывалась аналоговыми сетями самых разных
стандартов – Скандинавия развивала свои системы, Великобритания свои…
Сейчас уже сложно сказать, кто был инициатором последовавшей очень
скоро революции – “верхи” в виде производителей оборудования,
вынужденные разрабатывать для каждой сети собственные устройства,
или “низы” в качестве пользователей, недовольные ограниченной
зоной действия своего телефона.

Так или иначе, в 1982 году Европейской
Комиссией по Телекоммуникациям (CEPT) была создана специальная группа
для разработки принципиально новой, общеевропейской системы мобильной
связи. Основными требованиями, предъявляемыми к новому стандарту,
были: эффективное использование частотного спектра, возможность автоматического
роуминга, повышенное качество речи и защиты от несанкционированного
доступа по сравнению с предшествующими технологиями, а также, очевидно,
совместимость с другими существующими системами связи (в том числе
проводными) и тому подобное.

Плодом упорного труда многих людей из разных стран (честно говоря,
мне даже страшно представить себе объем проделанной ими работы!) стала
представленная в 1990 году спецификация общеевропейской сети мобильной
связи, названная Global System for Mobile Communications или
просто GSM.

А дальше все замелькало, как в калейдоскопе – первый оператор
GSM принял абонентов в 1991 году, к началу 1994 года сети, основанные
на рассматриваемом стандарте, имели уже 1.3 миллиона подписчиков,
а к концу 1995 их число увеличилось до 10 миллионов!

Давайте же попробуем разобраться, как организованы и на каких принципах
функционируют сети GSM. Сразу скажу, что задача предстоит не из легких,
однако, поверьте – в результате мы получим истинное наслаждение от
красоты технических решений, используемых в этой системе связи.

За рамками рассмотрения останутся два очень важных вопроса: во-первых,
частотно-временное разделение каналов (с этим можно ознакомиться здесь
) и, во-вторых, системы шифрования и защиты передаваемой речи (это
настолько специфичная и обширная тема, что, возможно, в будущем ей
будет посвящен отдельный материал).

Принципы организации сотовой связи

Основной принцип сотовой связи заключается в разделении всей зоны охвата телефонной связью на ячейки, называемые сотами. В центре каждой соты находится базовая станция (БС), поддерживающая связь с мобильными абонентами (сотовыми телефонами), находящимися в зоне её охвата. Базовые станции обычно располагают на крышах зданий и специальных вышках. На идеальной (ровной и без застройки) поверхности зона покрытия одной БС представляет собой круг (рис. 5.5,а), диаметр которого не превышает 10-20 км. Соты частично перекрываются и вместе образуют сеть (рис. 5.5,б), которая для простоты обычно изображается в виде множества шестиугольных сот (рис. 5.5,в).

Как работает сотовая связь которой пользуется весь мир | Пикабу

Рисунок 5.5 – Ячейки сотовой связи

Каждая сота работает на своих частотах, не пересекающихся с соседними (рис.5.6). Все соты одного размера и объединены в группы по 7 сот. Каждая из букв (А, В, С, D, Е, F, G) соответствует определённому диапазону частот, используемому в пределах одной соты. Соты с одинаковыми диапазонами частот разделены сотами, работающими на других частотах. Небольшие размеры сот обеспечивают ряд преимуществ по сравнению с традиционной наземной беспроводной связью, а именно:
– большое количество пользователей, которые одновременно могут работать в сети в разных частотных диапазонах (в разных сотах);
– небольшая мощность приемно-передающего оборудования, обусловленная небольшим размером сот (выходная мощность телефонных трубок составляет десятые доли ватт);
– меньшая стоимость устройств сотовой связи как маломощных устройств.

Как работает сотовая связь которой пользуется весь мир | Пикабу

Рисунок 5.6 – Сотовая структура

Если в какой-то соте количество пользователей оказывается слишком большим, то она может быть разбита на соты меньшего размера, называемые микросотами, как это показано на рис.5.7.

Как работает сотовая связь которой пользуется весь мир | Пикабу

Рисунок 5.7 – Микросоты

Базовая станция, в общем случае, содержит приёмопередатчик (ПП), поддерживающий связь с мобильными телефонами, и компьютер, реализующий протоколы беспроводной мобильной связи (рис.5.8).

Как работает сотовая связь которой пользуется весь мир | Пикабу

Рисунок 5.8 – Базовая станция

В небольших сетях все базовые станции соединены с коммутатором MSC (Mobile Switching Center – мобильный коммутационный центр) и имеют выход в телефонную сеть общего пользования (ТфОП), обеспечивающий связь мобильных телефонов со стационарными (рис. 5.9).

Как работает сотовая связь которой пользуется весь мир | Пикабу

Рисунок 5.9 – Соединения в сети

В больших сетях коммутаторы 1-го уровня (MSC) соединяются с коммутатором 2-го уровня (рис. 5.10) и т.д., при этом все MSC имеют выход в ТфОП напрямую, либо через коммутатор более высокого уровня (см. рис. 5.10).

Как работает сотовая связь которой пользуется весь мир | Пикабу

Рисунок 5.10 – Двухуровневая сеть

Связанные таким образом базовые станции и коммутаторы образуют сеть сотовой связи, административно подчиняющиеся одному оператору, предоставляющему услуги мобильной связи.
Базовые станции совместно с коммутационным оборудованием реализуют функции по определению текущего местоположения подвижных пользователей и обеспечивают непрерывность связи при перемещении пользователей из зоны действия одной БС в зону действия другой БС. При включении сотовый телефон ищет сигнал базовой станции и посылает станции свой уникальный идентификационный код. Телефон и БС поддерживают постоянный радиоконтакт, периодически обмениваясь служебными данными. При выходе телефона из зоны действия БС (или ослаблении радиосигнала) устанавливается связь с другой БС. Для этого базовая станция, фиксирующая ослабление сигнала, опрашивает все окружающие БС с целью выявить станцию, которая принимает наиболее мощный сигнал от мобильного телефона. Затем БС передаёт управление данным телефоном базовой станции той соты, в которую переместился мобильный телефон. После этого, телефону посылается информация о переходе в новую соту и предлагается переключиться на новую частоту, которая используется в этой соте. Этот процесс называется передачей и длится доли секунды.
Сотовые сети разных операторов соединяются друг с другом. Используя возможности роуминга, абонент, находясь вне зоны покрытия своей сети, может совершать и принимать звонки через сеть другого оператора.

Все базовые станции системы, в свою очередь, замыкаются на центр коммутации, с которого имеется выход во Взаимоувязанную сеть связи (ВСС) России, в частности, если дело происходит в городе, – выход в обычную городскую сеть проводной телефонной связи.

На рис. 5.11 приведена функциональная схема, соответствующая описанной структуре.

Как работает сотовая связь которой пользуется весь мир | Пикабу

Рисунок 5.11 – Упрощенная функциональная схема системы сотовой связи: БС – базовая станция; ПС – подвижная станция (абонентский радиотелефонный аппарат)

БС являются приемо-передающими радиотехническими объектами, излучающими электромагнитную энергию в УВЧ диапазоне (300-3000 МГц). Кроме того, каждая БС дополнительно оснащена комплектом приемо-передающего оборудования радиорелейной связи, работающим в диапазоне 3-40 ГГц, отвечающим за интеграцию данной БС в сеть в целом.

Мощность передатчиков БС обычно не превышает 5-10 Вт на несущую.

В основном применяются два типа передающих (приемо-передающих) антенн БС:

  • слабонаправленные с круговой диаграммой направленности (ДН) в горизонтальной плоскости – тип “Omni” (рис. 5.9);
  • направленные (секторные) с углом раствора (шириной) основного лепестка ДН в горизонтальной плоскости обычно 60 или 120 градусов (рис. 5.10).

Как работает сотовая связь которой пользуется весь мир | Пикабу

Рисунок 5.12 – Диаграмма направленности антенны типа “Omni”

Как работает сотовая связь которой пользуется весь мир | Пикабу

Рисунок 5.13 – Диаграмма направленности секторной антенны (угол раскрыва основного лепестка в горизонтальной плоскости 600)

Как работает сотовая связь которой пользуется весь мир | Пикабу

Рисунок 5.14 – Расположение антенны

Антенны БС устанавливаются на высоте 15-100 метров от поверхности земли на уже существующих постройках: общественных, служебных, производственных и жилых зданиях, дымовых трубах промышленных предприятий и т. д., или на специально сооруженных мачтах (рис. 5.14, 5.15).

Как работает сотовая связь которой пользуется весь мир | ПикабуИзлучение антенны не является безопасным. На рисунках показана биологически опасная зона.

Рисунок 5.15 – Расположение антенны

В действительности ячейки никогда не бывают строгой геометрической формы. Реальные границы ячеек имеют вид неправильных кривых, зависящих от условий распространения и затухания радиоволн, т.е. от рельефа местности, характера и плотности растительности и застройки и тому подобных факторов. Более того, границы ячеек вообще не являются четко определенными, так как рубеж передачи обслуживания подвижной станции из одной ячейки в другую может в некоторых пределах смещаться с изменением условий распространения радиоволн и в зависимости от направления движения подвижной станции. Точно так же и положение базовой станции лишь приближенно совпадает с центром ячейки, который к тому же не так просто определить однозначно, если ячейка имеет неправильную форму. Если же на базовых станциях используются направленные (не изотропные в горизонтальной плоскости) антенны, то базовые станции фактически оказываются на границах ячеек. Далее, система сотовой связи может включать более одного центра коммутации, что может быть обусловлено эволюцией развития системы или ограниченностью емкости коммутатора. Возможна, например, структура системы типа показанной рис. 5.16 – с несколькими центрами коммутации, один из которых условно можно назвать «головным» или «ведущим».

Как работает сотовая связь которой пользуется весь мир | Пикабу

Рисунок 5.16 – Система сотовой связи с двумя центрами коммутации

Регистрация в сети.

При каждом включении телефона после выбора сети начинается процедура
регистрации. Рассмотрим наиболее общий случай – регистрацию не в домашней,
а в чужой, так называемой гостевой, сети (будем предполагать, что
услуга роуминга абоненту разрешена).

Пусть сеть найдена. По запросу сети телефон передает IMSI
абонента. IMSI начинается с кода страны “приписки”
его владельца, далее следуют цифры, определяющие домашнюю сеть, а
уже потом – уникальный номер конкретного подписчика.

Например, начало
IMSI 25099… соответствует российскому оператору Билайн.
(250-Россия, 99 – Билайн). По номеру IMSIVLR
гостевой сети определяет домашнюю сеть и связывается с ее HLR.
Последний передает всю необходимую информацию об абоненте в VLR,
который сделал запрос, а у себя размещает ссылку на этот VLR,
чтобы в случае необходимости знать, “где искать” абонента.

Очень интересен процесс определения подлинности абонента. При регистрации
AuC домашней сети генерирует 128-битовое случайное
число – RAND, пересылаемое телефону. Внутри SIM с
помощью ключа Ki (ключ идентификации – так же как
и IMSI, он содержится в SIM) и алгоритма
идентификации А3 вычисляется 32-битовый ответ – SRES
(Signed RESult)

по формуле SRES = Ki * RAND. Точно такие же вычисления
проделываются одновременно и в AuC (по выбранному
из HLRKi пользователя). Если SRES,
вычисленный в телефоне, совпадет со SRES, рассчитанным
AuC, то процесс авторизации считается успешным и
абоненту присваивается TMSI (Temporary Mobile Subscriber
Identity-временный номер мобильного абонента).

Теоретически, при регистрации должен передаваться и номер IMEI,
но у меня есть большие сомнения насчет того, что московские операторы
отслеживают IMEI используемых абонентами телефонов.
Давайте будем рассматривать некую “идеальную” сеть, функционирующую
так, как было задумано создателями GSM.

Так вот, при получении IMEI
сетью, он направляется в EIR, где сравнивается с
так называемыми “списками” номеров. Белый список содержит
номера санкционированных к использованию телефонов, черный список
состоит из IMEI, украденных или по какой-либо иной
причине не допущенных к эксплуатации телефонов, и, наконец, серый
список – “трубки” с проблемами, работа которых разрешается
системой, но за которыми ведется постоянное наблюдение.

После процедуры идентификации и взаимодействия гостевого VLR
с домашним HLR запускается счетчик времени, задающий
момент перерегистрации в случае отсутствия каких-либо сеансов связи.
Обычно период обязательной регистрации составляет несколько часов.
Перерегистрация необходима для того, чтобы сеть получила подтверждение,
что телефон по-прежнему находится в зоне ее действия.

Дело в том,
что в режиме ожидания “трубка” только отслеживает сигналы,
передаваемые сетью, но сама ничего не излучает – процесс передачи
начинается только в случае установления соединения, а также при значительных
перемещениях относительно сети (ниже это будет рассмотрено подробно)
– в таких случаях таймер, отсчитывающий время до следующей перерегистрации,
запускается заново.

Все пользователи случайным образом разбиваются на 10 равноправных
классов доступа (с номерами от 0 до 9). Кроме того, существует несколько
специальных классов с номерами с 11 по 15 (разного рода аварийные
и экстренные службы, служебный персонал сети).

Информация о классе
доступа хранится в SIM. Особый, 10 класс доступа,
позволяет совершать экстренные звонки (по номеру 112), если пользователь
не принадлежит к какому-либо разрешенному классу, или вообще не имеет
IMSI (SIM).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *