Как работает сотовая связь — Журнал «Код»

Почему по сотовому мы можем говорить одновременно

ТВ-вещание либо радиовещание — это симплексная связь, то есть односторонняя. Один источник сигнала облучает какую-то местность, и все приёмники в этой местности «слышат» этот сигнал. 

Сотовая связь — это дуплексная связь, двусторонняя. В сотовой связи есть «канал вверх» и «канал вниз», они так и называются — uplink и downlink. Вниз — это канал к абоненту, потому что вышка обычно выше него, а вверх, соответственно, от абонента туда, наверх, в сторону вышки.

https://www.youtube.com/watch?v=4HfABc0hdwA

Два самых популярных способа разделения — это frequency division duplex и time division duplex, FDD и TDD соответственно. Классическая сотовая связь построена на FDD, когда у тебя на одной частоте телефон принимает, а на другой передаёт. То есть у тебя словно два радио на разных частотах: по одному ты передаёшь сигнал, по другому — передаёт вышка.

TDD — это то, что мы сейчас делаем. Пока я говорю, ты молчишь, когда ты говоришь, я молчу. Когда все начинают говорить одновременно, происходит интерференция — становится плохо слышно, у тебя начинает квакать телефон.

Стандартный TDD в сотовой связи построен на фреймах, где длина одного фрейма в 4G — 10 миллисекунд, в 5G — до одной миллисекунды. Дальше 10 миллисекунд разбиваются на uplink и downlink, ты 5 миллисекунд говоришь и 5 миллисекунд слушаешь. Это настолько мало, что тебе кажется: ты в любой момент можешь начать говорить, не надо ждать собеседника.

Pre-5g и 5g в россии

С 2022 года ПАО «МегаФон» и ПАО «Мобильные ТелеСистемы» тестирует Pre-5G совместно с международными компаниями Nokia и Huawei.

Главная сложность технологии 5G в том, что полоса сигнала гораздо шире, чем у предыдущих поколений сетей. Поэтому в России до сих пор не определили доступный диапазон частот для строительства сетей связи. Активно ведется дискуссия по поводу частот 3,4-3,8 ГГц.

Читайте про операторов:  Сколько сотовые операторы платят за размещение базовых станций

Решением Государственной Комиссии по использованию радиочастот для тестирования инфраструктуры 5G в России выделен диапазон радиочастот 25,25-29,5 ГГц. Летом 2022 года в Москве начали тестирование пятого поколения сотовой связи. Первой экспериментальной площадкой выступит территория Морозовской детской городской клинической больницы.

Окончательно освободить место в радиочастотном спектре под 5G Правительство РФ планирует в течение 2,5 лет. А Huawei обещает смартфоны с поддержкой 5G не раньше 2021 года.

С июля 2022 также ведется разработка российского программного обеспечения для взаимодействия с технологией 5G.

В чём отличие 1g от 5g

G — это Generation, «поколение». Новое поколение сотовой связи появляется примерно раз в десять лет. Нужно всё стандартизировать, изготовить оборудование, развернуть его и получить частоты. Это длительная процедура.

Сеть 1G появилась в 1979 году. Главная инновация была в том самом подходе, когда вышки ставятся по сотовому принципу. Сеть второго поколения 2G — это переход к цифровым коммуникациям, что позволило повысить ёмкость и безопасность. Повысилось количество абонентов и стало невозможно при помощи аудиоприёмника подслушать, о чём люди говорят по телефону.

Сеть третьего поколения научилась нормально передавать интернет. Без 3G не было бы iPhone с его приложениями. 4G изначально задумывалась для интернета, а не для голоса. До сих пор во многих сетях 4G ты не можешь поговорить голосом. С этим помогает LTE — конкретная реализация голосовой связи, которая стала доминирующей.

В 2022 году начали появляться самые первые 5G — это попытка улучшить 4G, подстроить под промышленные юзкейсы. 

Первый юзкейс Massive IoT — условно, 10 тысяч устройств на квадратный километр. Используется на заводе, который обвешан датчиками. Второй юзкейс — Ultra Reliable Low Latency Communications. Это управление робототехникой, телемедицина, удалённое управление поездами, гейминг. Третье — это то, что называется Mobile Broadband, более быстрая передача данных.

Возможности мобильной связи

В крупных городах сети 4G сильно перегружены, поэтому в периоды пиковой нагрузки бывают проблемы со связью. Растущее число абонентов и умных устройств, подключаемых к интернету, требует более быстрой и мощной связи. Сотовая телефония 5G нуждается в меньшем количестве ресурсов, обеспечивает более высокую скорость обмена данными, может поддерживать больше гаджетов и при этом стоит дешевле.

Основные задачи нового стандарта 5G – увеличить емкость сетей и спектр применяемых частот. Стабильный широкополосный доступ позволит массово использовать интернет вещей (IoT) и в бытовой, и в промышленной областях.

Принцип работы мобильной связи нового поколения обеспечит:

  • улучшение качества мобильного интернета;
  • массовое внедрение IoT, в том числе в удаленных и труднодоступных областях;
  • развитие концепции умных городов и Индустрии 4.0.

За счет высокой скорости потоковой передачи данных в сетях 5G пользователи смогут практически неограниченно использовать стриминговые платформы, получат доступ к сложным игровым сервисам, технологиям дополненной и виртуальной реальности из любого места.

Теперь вы знаете, как устроена мобильная связь и какие возможности дает развитие этой технологии. Тестирование 5G продолжается, в России массовый переход на этот стандарт планируется к 2027–2028 году.

Как организована связь

Сотовая связь потому и называется сотовой, что в основе любой сети — ячейки (соты), каждая сота представляет собой участок территории, который покрывает (обслуживает) базовая станция. Форма и размеры сот зависят от множества факторов, в том числе от мощности излучения базовой станции, стандарта, рабочих частот, направления антенн и т.п.

Соты обязательно перекрывают друг друга, это необходимо для того, чтобы мобильное устройство (терминал) не теряло связь при перемещении из одной соты в другую. Особенно это важно для владельца сотового телефона, который разговаривает во время движения.

В условиях городской застройки невозможно разбить карту города на квадратики и поставить базовые станции через равные расстояния, чтобы добиться качественного покрытия. Начинают играть роль этажность застройки, препятствия в виде памятников, возможность установить базовые станции в том или ином месте.

Не зря наши города назвали каменными джунглями, планирование в них радиосетей – это та еще задачка. Поэтому все операторы стараются резервировать дополнительные мощности в крупных городах, создавать перекрывающиеся зоны для базовых станций. И этому есть и другая причина.

Для эффективной работы сети одного покрытия мало, базовые станции должны обслуживать одновременно много пользователей. А в городах — очень много одновременно разговаривающих и пользующихся мобильным интернетом. Полосы частот, на которых передаются голос и данные, — ограниченный и крайне ценный ресурс, за их лицензирование операторы во всём мире платят государству большие деньги.

И не только деньги. Например, в России Министерство связи закладывает в лицензии обязательства оператора по обеспечению связью не только выгодных для сотовиков городов, но и малонаселенных территорий, где строить базовые станции – заведомо убыточное дело.

Как видите, у операторов есть еще и социальная нагрузка со стороны государства. Ничто не бывает бесплатным, и поэтому стоимость установки базовых станций и строительства сетей в малых городах компенсируется услугами в больших. Так устроен этот бизнес во всем мире, и Россия не является исключением.

Как появилась сотовая связь

Впервые идея сотовой связи была выдвинута в 1947 году — над
ней работали инженеры из Bell Labs Дуглас Ринг и Рэй Янг. Однако реальные
перспективы ее воплощения стали вырисовываться только к началу 1970-х годов,
когда сотрудники компании разработали рабочую архитектуру аппаратной платформы
сотовой связи.

Так, американские инженеры предложили размещать передающие
станции не в центре, а по углам «ячеек», а чуть позже была придумана технология,
позволяющая абонентам передвигаться между этими «сотами», не прерывая связи.
После этого осталось разработать действующее оборудование для такой технологии.

Задачу успешно решила компания Motorola — ее инженер Мартин
Купер 3 апреля 1973 года продемонстрировал первый работающий прототип
мобильного телефона. Он позвонил начальнику исследовательского отдела
компании-конкурента прямо с улицы и рассказал ему о собственных успехах.

Руководство Motorola немедленно вложило в перспективный
проект 100 миллионов долларов, однако на коммерческий рынок технология вышла
только через десять лет. Такая задержка связана с тем, что сначала требовалось
создать глобальную инфраструктуру
базовых станций сотовой связи.


На территории США этой работой занялась компания AT&T — телекоммуникационный
гигант добился от федерального правительства лицензирования нужных частот и
построил первую сотовую сеть, которая охватила крупнейшие американские города.
В качестве первого мобильника выступила знаменитая модель Motorola DynaTAC 8000.

В продажу первый сотовый телефон поступил 6 марта 1983 года.
Он весил почти 800 граммов, мог работать
на одном заряде 30 минут в режиме разговора и заряжался около 10 часов. При
этом аппарат стоил 3995 долларов — баснословную сумму по тем временам. Несмотря
на это, мобильник мгновенно стал популярен.

Принципы построения сотовых систем связи.

Современные стандарты сотовой связи

Любая радиосвязь, позволяющая абоненту пользоваться ею без привязки к конкретному месту: сотовая, пейджинговая, с помощью радиотелефонов, радиоудлинителей, раций и т. д. называется мобильной. Сотовая связь – разновидность мобильной связи, организованная по принципу сот или ячеек {cells), путем размещения базовых станций {Base Transceiver Station), которые покрывают локальную территорию.

Принцип построения сотовых систем состоит в следующем: в пределах территории действия сети устанавливается некоторое количество относительно маломощных стационарных приемопередающих станций (базовых станций), каждая из которых имеет небольшую зону действия (обычно несколько километров). При этом зоны действия соседних станций несколько перекрывают друг друга, чтобы обеспечить возможность перемещения абонента из одной зоны в другую без потери связи. Чтобы такое перекрытие было возможным, соседние станции должны использовать различные рабочие частоты. Для полного покрытия определенной территории требуются как минимум три различные частоты, чтобы расположенные в виде треугольника станции могли иметь перекрытие зон обслуживания. Четвертая же станция может снова использовать одну из этих трех частот, так как она граничит только с двумя зонами. При таком подходе форма зоны действия каждой базовой станции представляет собой шестиугольник, а расположение этих зон в точности повторяет структуру пчелиных сот, что и дало название системам связи с подобным принципом построения.

Совокупность локальных территорий составляет зону обслуживания оператора. Уровень сигнала в конкретном месте зависит от близости к базовой станции, рельефа местности, застройки, индустриальных помех и других факторов. Сигнал с базовой станции передается на коммутатор и обрабатывается им.

В состав оборудования системы сотовой связи входят базовые станции и центр коммутации, соединенные по выделенным проводным или радиорелейным каналам, как показано на рис. 7.2.

Состав оборудования системы сотовой связи

Рис. 7.2. Состав оборудования системы сотовой связи

Центр коммуникации – это автоматическая телефонная станция системы сотовой связи, обеспечивающая все функции управления сетью: слежение за подвижными абонентами, организация их эстафетной передачи, переключение рабочих каналов в соте при появлении помех, соединение абонента с абонентом обычной телефонной сети.

Базовая станция представляет собой многоканальный приемопередатчик, работающий в режиме приема и передачи сигнала и служащий своеобразным интерфейсом между сотовым телефоном и центром коммуникации подвижной связи.

Число каналов базовой станции обычно кратно восьми: 8, 16, 32. Один из каналов является управляющим, или каналом вызова, поскольку именно на нем производится установление соединения при вызове подвижного абонента сети, однако разговор происходит после переключения на другой канал, свободный в данный момент. Сама идея сотовой сети мобильной связи заключается в том, что, еще не выйдя из зоны действия одной базовой станции, телефон и его владелец попадают в зону действия следующей и так вплоть до наружной границы всей зоны покрытия сети. При этом сотовая связь не обязательно подразумевает мобильность: сегодня во всем мире все большее распространение получает так называемая «сотовая фиксированная связь». Такое решение часто оказывается экономически выгодным -отпадает необходимость в дорогостоящей прокладке телефонного кабеля, а одной мощной базовой станции вполне достаточно для телефонизации целого микрорайона. Антенны базовых станций устанавливаются в городе на высоте 15-100 м от поверхности земли на уже существующих постройках (общественных, производственных зданиях, жилых домах, дымовых трубах), а за городом – на высоких мачтах.

Система сотовой связи функционирует по следующему алгоритму.

В режиме ожидания (трубка положена) приемное устройство радиотелефона постоянно сканирует либо все каналы системы, либо только управляющие.

Для вызова соответствующего абонента всеми базовыми станциями системы связи по управляющим каналам передается сигнал вызова.

Сотовый телефон вызываемого абонента при получении этого сигнала отвечает по одному из свободных каналов управления.

Базовые станции, принявшие ответный сигнал, передают информацию о его параметрах в центр коммуникации, который в свою очередь переключает разговор на ту базовую станцию, где зафиксирован максимальный уровень сигнала сотового телефона вызываемого абонента.

Число абонентов в каждой соте непостоянно, поскольку они перемешаются из соты в соту. При пересечении границы между сотами производится автоматическое переключение абонента на обслуживание в другой соте.

Первая система сотовой связи, состоящая из одного шестиканального передатчика, была создана в североамериканском городе Сент-Луисе еще в 1946 г. Активное же внедрение сотовой связи началось значительно позже. Первые коммерческие системы появились в Америке в 1979 г., а приобрели национальный масштаб только в 1980-х. Например, в 1981 г. в Европе появилась первая международная система, объединившая Норвегию, Данию, Швецию и Финляндию.

В итоге в начале 1980-х гг. в Европе уже существовало более двадцати различных не совместимых между собой аналоговых сетей. Несовместимость стандартов мешала распространению сотовой телефонии, усложняла жизнь и операторам, и абонентам. Невозможно было, к примеру, осуществлять автоматический роуминг при перемещении из зоны действия одной сети в зону действия другой. И абонентские устройства, сами сотовые телефоны были далеко не универсальными. Для каждого типа сотовой связи нужно было разрабатывать уникальную аппаратуру.

Существовавшие на тот момент стандарты относят к стандартам первого поколения (1G – first generation). Это стандарты аналоговой сотовой связи. Их примерами является скандинавская система NMT, английская TACS и американская AMPS. Одним из самых живучих стандартов первого поколения стал цифровой стандарт D-AMPS {Digital Advanced Mobile Phone Service), который довольно долго был популярен в России, так же как и его аналоговый вариант AMPS.

В целях принятия единого стандарта в 1982 г. была создана специальная группа под названием Group Special Mobile (GSM), в которую вошли представители 24 западноевропейских стран. Разработчики новой системы резонно полагали, что цифровые методы сжатия и кодирования информации значительно расширят применения сотовой связи, обеспечат лучшее качество и предоставят пользователям невиданные ранее сервисы. В качестве стандарта была принята цифровая система компании «Mannesmann», внедренная в 1991 г. в Германии.

Таким образом, в середине 1991 г. началась коммерческая эксплуатация первой сети этого стандарта. Сегодня GSM является самой распространенной системой сотовой связи в мире, а ее название расшифровывается иначе – Global System for Mobile telecommunications -глобальная система мобильных телекоммуникаций. GSM на сегодняшний день является наиболее распространенным стандартом связи. По данным ассоциации GSMA на данный стандарт приходится 82 % мирового рынка мобильной связи. В GSMA в настоящее время входят операторы более чем 210 стран и территорий. GSM относится к сетям второго поколения (2 Generation).

В сотовой связи стандарта GSM используются радиочастоты 900, 1 800 или 1 900 МГц. Существуют также и довольно распространены мультидиапазонные (Dual-Band, Multi-Band) телефоны, способные работать в диапазонах 900/1 800 МГц, 850/1 900 МГц, 900/1 800/1 900 МГц.

В сравнении с аналоговыми стандартами, GSM имеет целый ряд преимуществ. Основное из них – применение маломощных передатчиков в абонентских аппаратах и в базовых станциях. Это удешевляет саму аппаратуру, но не сказывается на качестве связи. Кроме того, передача информации в цифровом виде позволяет легко обеспечить высокую степень конфиденциальности переговоров и широкий спектр сервисных функций.

Технология GSM – это на самом деле целый «букет» сложнейших технологий. Первая из них – технология оцифровки и кодирования звука. Поскольку эти операции требуют немалых вычислительных ресурсов, то в каждом сотовом телефоне, даже в самом дешевом, работает достаточно мощный специализированный процессор. Процессор реализует и технологию многоканального выравнивания. Дело в том, что в диапазоне 900 МГц и выше радиосигнал легко отражается от стен зданий и других препятствий. В результате телефон получает множество отличающихся по фазе сигналов, из которых выделяет нужный, а остальные игнорирует.

Еще одна любопытная особенность GSM – прерывистая передача. Когда мы молчим, телефон отключает передатчик. Как только заговорим – включает. Этот механизм позволяет свести к минимуму энергопотребление сотового телефона.

Все сотовые телефоны в зависимости от мощности встроенных радиопередатчиков подразделяются на несколько классов. Большинство популярных моделей имеют мощность до 0,8 Вт. Но обычно, когда базовая станция находится рядом с абонентским устройством (а «соты» GSM в больших городах располагаются достаточно густо, чтобы избежать «мертвых» зон между строениями), полная мощность передатчика телефона для поддержания устойчивой связи не нужна. Для регулировки мощности используется механизм анализа количества ошибок при передаче-приеме. На его основе мощность передатчика базовой станции и телефона понижается до уровня, когда качество связи достаточно стабильно.

Намного более сложным представляется с точки зрения рядового абонента система передачи сигнала от одной базовой станции к другой, выделения каналов связи и прочее.

Все операторы сотовой GSM-связи, кроме передачи речевых сообщений, предоставляют стандартный набор услуг по передаче данных: CSD, GPRS, EDGE, WAP.

CSD (Circuit Switched Data или GSM Data) – стандартная технология передачи данных с коммутацией каналов в сети GSM. Для того чтобы воспользоваться CSD-услугами, необходимо иметь мобильный телефон с поддержкой CSD. При этом абсолютное большинство мобильных телефонов поддерживает технологию CSD.

Преимущества CSD:

  • • постоянная скорость передачи данных – 9,6 кбит/с;
  • • наиболее обширная зона CSD-покрытия, которая соответствует зоне GSM-покрытия;
  • • тарификация CSD-услуг не зависит от объема переданных и полученных данных;
  • • стабильное CSD-соединение.

Особенности CSD:

  • • при использовании CSD информация передается по одному выделенному и закрепленному за CSD-соединением радиоканалу;
  • • CSD совместима со всеми самыми распространенными аналоговыми и цифровыми протоколами передачи данных.

Для доступа в Интернет непосредственно с мобильного телефона подключайте услугу WAP (Wireless Application Protocol). При этом для работы в Интернете Вам не нужен компьютер, достаточно только мобильного телефона, поддерживающего WAP. Многие сайты в Интернет имеют свои WAP-версии, оптимизированные специально для доступа с мобильных телефонов. Применение данной услуги будет более подробно рассмотрено далее.

Для скоростного доступа в Интернет обычно используется технологии GPRS или EDGE. GPRS (General Packet Radio Service) – это технология пакетной передачи данных, которая позволяет с помощью мобильного телефона получать и передавать информацию на более высоких скоростях по сравнению со стандартным голосовым каналом GSM (9,6 кбит/с). Максимальная скорость в GPRS составляет 171,2 кбит/с. Вы можете выйти в Интернет со своего мобильного телефона с помощью WAP-технологии как с использованием GPRS, так и без нее. EDGE (.Enhanced Data-Rates For GSM Evolution) – это логическое продолжение GPRS, обеспечивающее более высокую скорость передачи данных – до 384 кбит/с. EDGE предоставляет пользователю те же услуги, что и GPRS. Технология EDGE не требует дополнительных настроек, в зоне покрытия мобильный телефон выберет ее автоматически.

Сотовая связь будущего

Стандарт 4G заточен на непрерывную передачу гигабайтов
информации, в нем даже отсутствует канал для передачи голоса. За счет
чрезвычайно эффективных схем мультиплексирования загрузка фильма высокого
разрешения в такой сети займет у пользователя 10-15 минут. Однако даже его
возможности уже считаются ограниченными.

В 2020 году ожидается официальный запуск нового поколения
связи стандарта 5G, который позволит передачу больших объемов данных на
сверхвысоких скоростях до 10 Гбит/сек. Кроме этого, стандарт позволит
подключить к высокоскоростному интернету до 100 миллиардов устройств.

Именно 5G позволит появиться настоящему интернету вещей — миллиарды
устройств будут обмениваться информацией в реальном времени. По оценке
экспертов, сетевой трафик скоро вырастет
на 400%. Например, автомобили начнут постоянно находиться в глобальной Сети и получать
данные о дорожной обстановке.

Низкая степень задержки обеспечит связь между транспортными
средствами и инфраструктурой в режиме реального времени. Ожидается, что надежное
и постоянно действующее соединение впервые откроет возможность для запуска на
дорогах полностью автономных транспортных средств.

Российские операторы уже экспериментируют с новыми спецификациями
— например, работы в этом направлении ведет «Ростелеком». Компания подписала
соглашение о строительстве сетей 5G в инновационном центре «Сколково». Реализация
проекта входит в государственную программу «Цифровая экономика», недавно
утвержденную правительством.

Стандарты мобильной связи

Стандарты мобильной связи развивались от 1G до 5G: менялись технологии и возможности, увеличивалось количество функций, доступных пользователям, и скорость передачи данных.

Для наглядности сравним поколения в таблице:

ПоколениеГод запускаОсновные стандартыОсобенностиСкорость передачи данныхДиапазон
1G1984NTT, AMPS, TACS, NMT Аналоговый стандарт, только голосовые звонки, низкая емкость, нет шифрования1,9 Кбит/с
2G1991TDMA, CDMA, GSM, PDCЦифровой стандарт, звонки и СМС, высокая емкость, шифрование, роуминг9,6…14,4 Кбит/с900, 1800 мГц
3G2000UMTS, WCDMA, CDMA2000Пакетная передача данных, видеоконференции, кино и другой контент на мобильных устройствах, качественная защита от обрывов связи144…2048 Кбит/с900, 1800, 2100 мГц
4G2022LTE-A, WiMAX 2Высокая скорость передачи данных, низкие задержки, высокое качество связи даже при движении на большой скорости100 Мбит/с…1 Гбит/с800, 1800, 2600 мГц
5G2022NRВысокая пропускная способность, прямое соединение между абонентами (device-to-device), меньший расход заряда батарей, IoT1…6,5 Гбит/снизкочастотный – 600…850 МГц;
среднечастотный – 2,5…3,7 ГГц;
высокочастотный – 25…39 ГГц

На заметку. Переход между стандартами мобильной связи происходит не мгновенно, после 2G был промежуточный стандарт, который принято называть 2,5G, а после 3G – LTE, именуемый также 3,5G.

Технологии

Информация о SIM-картах хранится на серверах оператора в домашнем регионе и где бы не находился абонент, взаимодействие с телефоном происходит через упомянутые сервера.

Для оказания услуг сотовой связи используют 3 основные технологии:

  • GMS. Цифровой стандарт передачи данных второго поколения. Информация передается в виде узкополосного сигнала на частотах 850, 900, 1800, 1900 МГц. В 2003 году разработана технология Enhanced Data-rates for GSM Evolution (EDGE или 2,5G), которая позволила пользоваться услугами сети Интернет через сети GSM. Максимальная скорость передачи данных – 59,2 Кбит/ секунду;
  • UMTS. Наиболее распространенный стандарт сетей 3 поколения. В отличие от сетей 2 поколения, информация передается по широкополосному каналу связи. Преимущественно работает в диапазонах 2100 и 900 МГц. Первоначально позволял передавать данные на скоростях от 384 Кбит/ секунду. Благодаря дополнительной технологии 2006 года High-Speed Downlink Packet Access (HDPSA или 3,5G) скорость увеличилась до 21 Мбит/секунду;
  • LTE. Стандарт передачи данных четвертого поколения. Работает на частотах 800, 1800, 2100, 2600 МГц. В мире 1800 МГц – наиболее используемый диапазон. В России первоначальный упор делался на 2600 МГц, но на 2022 год задействованы все перечисленные диапазоны радиочастот. Каждая сота может поддерживать до 200 клиентов при ширине полосы 5 МГц и выдавать информацию абоненту со скоростью до 75,4 Мбит/с.

Для каждой технологии и оператора выделены отдельные частоты передачи и приема. Список разрешенных для использования каналов отличается в разных странах. К примеру, в регионах России до 2022 года технология 4G не работала на некоторых китайских телефонах, потому что передатчики смартфонов не поддерживали частоты, используемые российскими операторами.

У природы есть плохая погода

Возможно, вы слышали фразу «сота дышит». Речь о том, что с повышением нагрузки (число одновременно разговаривающих) территория покрытия базовой станции 3G может уменьшаться, вплоть до появления «дыр» в покрытии там, где соседние соты мало перекрывают друг друга.

Ближе к границам сот связь 3G может быть сносной в периоды умеренной нагрузки и сильно портиться или вообще пропадать в «пиковые» часы. Также многие забывают о том, что связь терминала (телефона) с базовой станцией — своего рода «последняя миля», разговор или трафик передачи данных ещё нужно доставить от базовой станции до коммутатора.

В крупных городах сейчас большинство базовых станций подключены по оптоволоконному кабелю, в населенных пунктах поменьше используют радиорелейные каналы связи. Тянуть оптоволокно на десятки километров дорого и ненадёжно, его ещё порой пытаются сдать в пункт приёма цветных металлов.

Всё было неплохо, пока в сетях «гулял» преимущественно голос, с ростом объёмов передачи данных радиорелейки перестали справляться. Их меняют на новые, большей пропускной способности, но дело это дорогое и небыстрое с учётом многих тысяч станций, нуждающихся в таком апгрейде.

Заголовок про погоду неслучаен, радиорелейные каналы связи резко теряют свою пропускную способность во время дождя. Бороться с этим сложно, и в плохую погоду можно ненароком остаться без мобильного интернета. Особенно в местах, удалённых от сравнительно крупных населённых пунктов.

Сезонный фактор тоже имеет значение. Зимой всё может прекрасно работать, и мобильный интернет будет «летать», а на майские праздники и летом, с появлением дачников, всё становится совсем плохо, и просто в соцсети посидеть – счастье, не говоря уже про онлайн-видео.

Может быть перегрузка конкретной базовой станции, а может и радиорелейный канал связи не справляться. Точный «диагноз» может поставить только сам оператор. Чтобы разобрались в проблеме и приняли меры, нужно активно писать и жаловаться, рассчитывать на «само как-нибудь исправится» бесполезно.

И опять пресловутая «экономическая целесообразность»: окупится ли дорогостоящая модернизация? Если голосовая связь работает, то официальных претензий к оператору в принципе быть не может. И даже если голосовая связь перестаёт работать, то в «Договоре» заботливо указано про «вероятностный характер связи», не подкопаешься.

P.S. В следующем материале мы остановимся на покрытии сотовых сетей, качестве сигнала на улице и в домах, поговорим о частотах и проникновении волн. Затронем разницу между операторами в России и других странах, чем отличаются стратегии их развития.

Поделиться: 

Мы в социальных сетях:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *