НОУ ИНТУИТ | Лекция | Система мобильной связи UMTS

1. Архитектура системы UMTS

Архитектура системы UMTS [2, 28] показана на
рис.
6.1. Она использует ту же хорошо известную архитектуру, которая применяется во всех основных системах второго поколения.

1.1. Пользовательское оборудование (UE)

Пользовательское оборудование (UE) включает две части:

Мобильная станция должна быть рассчитана на поддержку всех видов услуг сети третьего поколения. Она должна обеспечивать:

UTRAN состоит из двух элементов:

Каждая из этих станций имеет традиционную архитектуру, но с учетом новых сервисов и технологий. Рассмотрим кратко архитектуру RNC. Поскольку она зависит от места станции в сети и связи с другими станциями этой и другой систем, архитектура может быть различной.

Поэтому приведем конкретный пример. В этом примере дан некоторый типовой состав устройств, обеспечивающий набор услуг [16]. Архитектура ориентирована на работу в быстродействующей сети ATM. Эта система демонстрирует возможности станций 3-го поколения.

1.2. Архитектура контроллера радиосети (RNC)

Контроллер управления радиосетью (RNC), архитектура которого показана на
рис.
6.1, обеспечивает функции:

К одному контроллеру радиосети могут быть подключены как минимум три базовые станции. При этом каждая из них может использовать до двух 1,5 или 2 Мбит/с Iub-каналов. Транспортная емкость конфигурации, представленной на
рис.
6.

В последнее время проводятся работы по замене ATM-коммутаторов на коммутаторы soft switch [18].

UMTS во время мягкого хэндовера с одним UE могут работать два контроллера RNC. Тогда один из них (завершающий соединение) называется обслуживающим (SRNS — Service RNC), а другой — дрейфующим (Drift RNC).

1.3. Центр коммутации мобильной связи

Центр коммутации мобильной связи (MSC), архитектура которого представлена на
рис.
6.3, содержит все типовые элементы станции того же типа для GSM и выполняет те же функции (см.
“Услуги и внутренние интерфейсы”
). MSC обеспечивает:

  • подключение к фиксированным сетям (таким как общедоступная телефонная сеть PSTN или цифровая сеть интегрального обслуживания ISDN);
  • передачу сигналов между функциональными объектами в подсистеме сети (используется ОКС № 7 — отдельный канал сигнализации);
  • обслуживание подвижных абонентов, расположенных в пределах определенной географической зоны;
  • обслуживание группы сот и обеспечение всех видов соединений, в которых нуждается в процессе работы подвижная станция. MSC аналогичен ISDN коммутационной станции и реализует интерфейс между фиксированными сетями (PSTN, Интернет, ISDN и т. д.);
  • взаимодействие с RNC через интерфейс Iub, а с сетями ISDN и локальными компьютерными АТМ-сетями — через интерфейсы фиксированных сетей;
  • маршрутизацию вызовов и функции управления вызовами, выполнение процедур управления и все функциональные возможности мобильного абонента, такие как регистрация, аутентификация, обновление местоположения, передачи соединения (хэндовер);
  • формирование данных, необходимых для выписки счетов за предоставленные сетью услуги связи;
  • поддержание процедур безопасности, применяемых для управления доступами к радиоканалам.

Основным отличием MSC UMTS от аналогичного узла MSC системы GSM является то, что коммутатор MSC должен быть рассчитан на высокие скорости, поэтому он обычно выполняется на базе ATM-коммутатора.

Основными элементами базовой сети являются:

Подобно RNC, центр коммутации мобильной связи (MSC) также разработан на основе базовой АТМ-инфраструктуры и обладает такой же гибкостью, что и RNC. В действительности некоторые функции могут даже перераспределяться между RNC.

Основной задачей MSC является установление и разъединение соединений от мобильных станций. Так как MSC может в одном и том же узле обрабатывать речь, осуществлять передачу пакетных данных и данных с коммутацией каналов, становится возможным обслуживание мультимедийных приложений. MSC выполняет функции:

Для адаптивной обработки абонентских данных для передачи по аналоговым голосовым сетям, а также сетям с коммутацией каналов и с коммутацией пакетов, используется внешнее оборудование, например, конвертор ISDN и АТМ-маршрутизатор.

Внешний интерфейс основной скорости (ET BRI) соответствует стандартам. Кроме того, при подключении внешнего конвертора ISDN также могут быть реализованы европейские ISDN-интерфейсы (PRI и BRI), соответствующие рекомендациям ITU-T, Q.

931 (Уровень 3), Q.921 (Уровень 2) и I.430/I.431 (Уровень 1). Внешняя локальная компьютерная АТМ-сеть использует постоянный виртуальный канал для осуществления всех подключений IP-поверх-ATM в соответствии со спецификацией IETF RFC 1483.

Возможности совместимости центра коммутации мобильной связи испытательной системы (блок IWF) позволяют подключаться к центрам коммутации сетей GSM.

Встроенный IP-маршрутизатор обеспечивает обработку потоков со скоростью до 10 Мбит/с. Распределение ресурсов между речью, канальными данными и пакетными данными регулируется различными вариантами конфигурации эхоподавителя, блоков адаптации услуг UDI (UADP) и адаптации пакетных услуг (PADP), IP-маршрутизатора (IPR) и интерфейса PRI.

Внешние сети можно разделить на две группы:

Для целей пакетной коммутации на мобильной сети устанавливаются следующие виды коммутаторов:

Иногда при начальном пуске станции или небольшой нагрузке передача пакетной информации осуществляется дополнительным оборудованием, устанавливаемым на MSC.

1.4. Каналы

Данные, передаваемые по каналам UMTS/WCDMA, организуются в виде кадров, временных положений (слотов) и каналов. Это касается всей полезной нагрузки и управляющих сигналов.

UMTS использует технологию CDMA, как и технологию доступа, но дополнительно применяет технологию временного разделения и соответственно структуру кадра и временного положения (слота) для того, чтобы обеспечить соответствующую структуру каналов [60].

Каналы разделяются на 10-миллисекундые кадры, каждый из которых содержит 16 слотов длительностью по 625,0 мкс. В направлении от станции к UE время разделяется так, чтобы временные слоты содержали поля с пользовательскими данными и управляющими сообщениями.

В направлении от UE при образовании каналов используется передача в одном формате данных и управляющих сообщений.

Все каналы классифицируются по трем категориям: логические, транспортные и физические. Логические и транспортные каналы определяют методы и пути передачи данных, физические переносят полезную нагрузку и обеспечивают физические характеристики сигналов.

Каналы организованы так, чтобы логические каналы зависели только от передаваемой информации, а физический уровень обеспечивает, как и с какими характеристиками передается эта информация. Протокол управления доступом к среде (MAC) обеспечивает обслуживание логических каналов. Набор типов логических каналов определен для различных видов услуг передачи данных.

2. Общая модель протоколов UMTS

Общая модель протоколов UMTS показана на
рис.
6.5. Она построена по принципу модели протоколов B-ISDN на основе взаимодействующих уровней и плоскостей.

Потоки информации, проходящие через UTRAN, логически делятся на две части:

В состав слоя без доступа входят протоколы верхнего (пользовательского) уровня, которые не занимаются проблемами доступа, а связаны только с услугами [113].

2.1. Плоскость управления

Протоколы плоскости управления (C-plane) определяют все функции сигнализации, установления, контроля и разъединения соединений.

Кроме этого, он включают в себя несколько прикладных протоколов, которые позволяют поддерживать сигнализацию на различных участках сети (см.
рис.
6.5).

Это протоколы:

2.2. Плоскость пользователя

Плоскость пользователя (U-plane) обеспечивает транспортировку всех видов информации в совокупности с соответствующими механизмами защиты от ошибок, контроля и управления потоком. Вся информация, передаваемая и принимаемая пользователем, например, кодированная речь при речевом вызове или пакеты при соединении с Интернетом, передаются через плоскость пользователя. Каждый поток данных характеризуется одним или несколькими протоколами фреймов, указанных для этого интерфейса.

2.3. Плоскость управления транспортной сетью

Поскольку сеть UTRAN рассчитывается на передачу высокоскоростной информации, в наземной части она базируется на сети ATM. Для этой сети характерно, что для сигнализации используется сеть отдельных виртуальных каналов (SVC — Signaling Virtual Channel), предназначенных только для передачи сигналов управления, взаимодействия и технического обслуживания.

Некоторые приложения могут требовать создания нескольких (постоянных или временных) виртуальных каналов. Например, услуги мультимедиа могут потребовать установления отдельных каналов сигнализации для услуг передачи речи, видеоизображения и данных. Каналы сигнализации могут быть односторонними или двухсторонними, симметричными (одинаковая скорость в обоих направлениях) и асимметричными (различные скорости в противоположных направлениях).

Виртуальные каналы могут быть:

Плоскость управления транспортной сетью используется для управления и организации указанных выше каналов сигнализации на транспортном уровне. Она не охватывает уровня радиосети. Для сети UMTS в нее включается протокол управления звеном доступа ALCAP (Access LinkControl Application), который необходим для установления транспортных B-каналов для плоскости пользователя — например, для установления каналов сигнализации “точка — точка” и для установления канала сигнализации в соответствии с услугами, предоставляемыми данному пользователю.

Когда используется плоскость управления транспортной сетью, каналы сигнализации пользователя устанавливаются по входному сообщению (транзакция) от прикладного протокола на плоскости управления, которое запускает установление этих каналов с помощью одной из частей протокола ALCAP, специально предназначенного для технологии плоскости пользователя.

Следует отметить, что протокол ALCAP может и не потребоваться, например, когда используются сети с заранее заданной конфигурацией каналов сигнализации. Тогда протокол ALCAP не запускается.

Спецификации UMTS предполагают, что запуск системы по протоколам ALCAP всегда осуществляется с помощью действий персонала по эксплуатации и обслуживанию (O&M).

3. Интерфейсы отдельных участков

На
рис.
6.6 дано сквозное представление протоколов плоскости управления сети UMTS. Этот рисунок показывает набор протоколов, которыми пользуется каждый элемент сети для передачи сообщений сигнализации.

3.1. Уровень управления радиоресурсами (RRC)

RRC (Radio Resource Control) — протокол верхнего уровня [57], который является частью интерфейса Iub. Процедуры и сообщения подсистемы управления радиоресурсами приведены в табл. 6.2.

В RRC входят следующие протоколы:

RRC выполняет следующие функции:

Уровень RRC обеспечивает соединения сигнализации к верхним уровням с целью поддержания обмена информационными потоками между процессами верхнего уровня. Сигнальное соединение используется для передачи сообщений между пользовательским оборудованием и основной сетью, чтобы передать информацию верхнего уровня. Для каждой локальной области сети сигнальное соединение может обслуживать в каждый момент только один вызов для одного UE.

В таблице 6.1 приведены процедуры и сообщения подсистемы управления радиоресурсами.

3.3. Протоколы различных уровней в системе UMTS

Три плоскости в интерфейсе Iub используют общие средства передачи в режиме ATM для всех плоскостей. Физический уровень представляет собой интерфейс с физической средой: волоконно-оптическими кабелями, радиоканалом или медным проводом. Реализация на физическом уровне может выбираться из большого ряда таких стандартных имеющихся на сегодняшний день технологий передачи, как, например, SONET, SDH или E1.

Принцип уровня адаптации протоколов сигнализации (плоскость управления) в режиме ATM детально разобран в [19]. Мы рассмотрим два случая.

Основная сеть (CN) применяет технологию коммутации каналов (CS).

В этом случае задачу выполняет уровень адаптации для сигнализации (SAAL — Signaling ATM Adaptation Layer). Протоколы этого уровня содержат следующие подуровни (
рис.
6.10):

Для управления сигнализацией применяются также некоторые из уровней систем сигнализации по отдельному каналу сигнализации (ОКС).

Все эти уровни подробно изучены в [1, 10, 11, 17, 35]. Это уровни:

При выполнении отдельных функций могут быть некоторые варианты применения.Например, пакет протоколов для плоскости управления транспортной сетью состоит из протокола сигнализации для установления соединений без уровня SCCP (AAL2).

Основная сеть (CN) применяет технологию пакетной коммутации (PS).

Тогда задействуются средства, используемые в сети Интернет (
рис.
6.11).

Логические каналы

Широковещательный канал управления (BCCH — Broadcast Control Channel) — канал от станции к UE (DL — downlink). Этот канал широковещательно передает информацию к группе UE, а также информацию о пилот-сигналах соседних сот и т. д.

Широковещательный управляющий канал оповещения (PCCH — Paging Control Channel) (от станции к абоненту). Этот канал связан с PICH (Paging Indication Channel), о котором будет сказано немного позднее, и используется для уведомления и широковещательных передач вызова.

Выделенный канал управления (DCCH — Dedicated Control Channel) (от станции к UE и обратно). Этот канал используется, чтобы доставлять специализированную информацию управления в обоих направлениях.

Общий канал управления (CCCH — Common Control Channel), (от станции UE и обратно). Этот двунаправленный канал используется, чтобы передать управляющую информацию.

Общедоступный канал управления канала (SHCCH — Shared Channel Control Channel). Этот канал двунаправленный и применяется только в режиме временного дуплексного разделения (TDD — Time Duplex Division) WCDMA/UMTS, где он используется, чтобы транспортировать общедоступную управляющую информацию канала.

Специализированный канал трафика (DTCH — Dedicated Traffic Channel). Это двунаправленный канал, используется для доставки пользовательских данных или трафика.

Общий канал трафика (CTCH — Common Traffic Channel) (от станции к абоненту) — однонаправленный канал, используется для передачи специализированной пользовательской информации группе UEs.

Протокол управления доступом к среде (mac)

Протокол управления доступом к среде (MAC — Media Access Control) обеспечивает услуги передачи данных по логическим каналам [126]. Набор логических типов канала определяется различными видами услуг передачи данных. Каждый логический тип канала определен типом передаваемой информации.

Уровень MAC имеет несколько групп протоколов:

Каждый протокольный блок данных (PDU) содержит заголовок опции MAC и заголовок сервисного блока данных (MAC SDU). Оба этих заголовка имеют переменный размер.

Содержание и размер заголовка MAC зависят от типа логического канала, и в некоторых случаях не указывается ни один из параметров этих заголовков. Размер MAC SDU зависит от размера протокольного блока данных предыдущих уровней, которые определяются при процедуре установки протоколов.

Структура заголовка протокола MAC представлена на
рис.
6.7.

TCTF (Target Channel Type Field) — поле назначения канала

Поле TCTF обеспечивает идентификацию логического класса канала. Они подразделяются на каналы случайного доступа (RACH) и каналы прямого доступа (FACH).

Размер поля TCTF и FACH для FDD — любой из 2 или 8 битов, зависящих от значения двух самых старших битов, для TDD — либо 3 либо 5 битов в зависимости от значения трех старших разрядов.

Поле UE-Id type поле длиной 2 бита необходимо, чтобы гарантировать правильную расшифровку поля UE-Id в заголовках MAC.

Значения этого поля:

Поле UE-Id обеспечивает идентификацию UE при передаче по транспортным каналам определены следующие типы UE-Id, используемые в MAC:

Длины поля UE-Id заголовка MAC следующая.

Поле C/T обеспечивает идентификацию логического канала, когда имеется много логических каналов в одном и том же транспортном канале. Поле C/T используется также, чтобы обеспечить идентификацию логического типа канала на выделенных транспортных каналах и на FACH и RACCH, когда их передачи идут на пользовательских каналах передачи данных. Размер поля C/T установлен 4 бита и для обычных транспортных каналов, и для выделенных транспортных каналов.

Поле C/T имеет следующие значения:

Протокол управления радиоканалом связи (rlc)

Радиопротокол управления каналом связи (RLC) [117, 124] обеспечивает 3 режима работы.

  1. Передача информации в режиме “прозрачного” обслуживания TrD (Transparent Mode Data).
  2. Передача информации в режиме без подтверждения правильного приема данных (UMD — Unacknowledged Mode Data).
  3. Передача и получение информации в режиме с подтверждением правильного приема данных (AMD — Acknowledged Mode Data).

RLC выполняет следующие функции:

Передаваемые блоки данных. Они могут содержать данные или сообщения управления протоколов сигнализации.

В соответствии с режимами протокол использует различные форматы.

Формат TrD (блок, передаваемый в “прозрачном” режиме).

Формат TrD используется для того, чтобы передать с помощью RLC данные, поступившие от обслуживаемого уровня, не добавляя никаких заголовков.

Формат UMD (блок передачи объекта в режиме без подтверждения о приеме данных).

Формат UMD используется для того, чтобы передать последовательно пронумерованные PDU, содержащие RLC-данные исходного блока SDU. При этом исходные данные сегментируются для включения в протокольные блоки. В таком режиме сегменты передаются без подтверждения правильности приема сегментов и их сборки.

Заголовок UMD PDU в первом октете содержит порядковый номер первого сегмента блока данных (для этого используются 7 старших разрядов).

Далее заголовок RLC содержит индикаторы, указывающие длину каждого сегмента, начиная с первого.

Формат AMD (блок приема и передачи в режиме обслуживания с подтверждением о приеме данных).

Как и в предыдущем случае, формат AMD используется, чтобы передать последовательно пронумерованные PDU, содержащие RLC-данные исходного блока SDU. Однако формат AMD передает помимо пользовательских данных и другую информацию, которая дает возможность подтвердить правильный прием сегментов и поддержать процессы повторения информации. Эта информация позволяет:

Формат с вложением состояния PDU (Piggybacked Status PDU) наряду с пользовательскими данными содержит дополнительно вложенные данные для управления (например, данные о состоянии оборудования, сброса оборудования или таймеров в исходное состояние и др.).

Подробные описания этих форматов приведены в [117, 124].

Сотовые системы связи

Количество вопросов – 232

Транспортные каналы

Транспортные каналы передают информацию, обеспечивающую надежное и достоверное прохождение данных по сети.

Специализированный (выделенный) транспортный канал (DCH — Dedicated transport Channel) представляет собой двунаправленный канал. Он используется, чтобы передать данные конкретному UE. Каждый UE имеет собственный DCH в каждом направлении.

Широковещательный канал (BCH — Broadcast Channel) (от станции к UE). Этот канал широковещательно передает информацию к UE в соте, чтобы дать возможность им идентифицировать сеть и соту.

Канал прямого доступа (FACH — Forward Access Channel) (от станции к UE). Этот канал передает данные или информацию к UE, которая зарегистрирована в системе. В соте может быть более одного FACH. Они могут также доставлять пакеты данных.

Широковещательный канал вызова (PCH — Paging Channel) (от станции к UE). Этот канал может передавать аварийные сообщения UE, не входящие в данные вызова, SMS-сообщения, данные о сеансах связи или о типе требуемого обслуживания, например, запрос на перерегистрацию.

Канал произвольного доступа (RACH — Random Control Channel) (канал связи от UE к станции). Этот канал передает запросы на обслуживание от UE, обращающегося к системе.

Общий канал передачи пакетов (CPCH — Common Packet Channel) (канал связи от UE к станции). Этот канал обеспечивает возможности, дополняющие RACH, а также передает сигналы быстрого регулирования мощности.

Канал совместного использования (DSCH — Downlink Shared Channel) (от станции к UE). Этот канал может быть разделен между несколькими пользователями и используется для данных, которые являются “взрывными” по природе, такие как служба просмотра веб-браузеров, заявки в которую могут “взорваться” от события или по времени (например, во время чемпионата мира по футболу).

Управление мобильностью (mm — mobility management)

Управление мобильностью выполняет функции управления обновлением местоположения и процедурами регистрации, а также защитой и аутентификацией.

Заголовок формата MM показан на
рис.
6.9.

Поля формата имеют следующие значения:

Значения поля “тип сообщения” в формате MM указаны в табл. 6.3.

Управление соединением (cm — connection management)

Управление соединением обрабатывает общий процесс управления установлением соединения и разъединения, а также управляет дополнительными услугами и службой передачи коротких сообщений. Он участвует в обслуживании следующих процедур:

Формат сообщения этого протокола представлен на
рис.
6.8:

Значения поля “тип сообщения” формата CM приведены в табл. 6.2.

Физические каналы

Первичный общий физический канал управления (PCCPCH — Primary Common Control Physical Channel) (от станции к UE). Этот широковещательный канал непрерывно передает системную идентификацию и информацию управления доступом.

Вторичный общий физический канал управления (SCCPCH — Secondary Common Control Physical Channel) (от станции к UE). Этот канал доставляет информацию канала прямого доступа (FACH — Forward Access Channel) и широковещательного канала вызова (PCH) с сообщениями для Ues, которые зарегистрированы на сети.

Физический канал произвольного доступа (PRACH — Physical Random Access Channel) (канал связи от UE к станции). Этот канал дает возможность UE передать сообщения произвольного доступа при попытке обращения к сети.

Специализированный физический канал данных (DPDCH — Dedicated Physical Data Channel) (двусторонний). Этот канал используется, чтобы передать пользовательские данные.

Специализированный физический канал управления (DPCCH — Dedicated Physical Control Channel) (двусторонний). Этот канал доставляет управляющую информацию к и от UE. В обоих направлениях канал доставляет биты пилотного канала и идентификатор объединенного транспортного формата (TFCI — Transport Format Combination Identifier).

Общий пилот-канал (CPICH — Common Pilot Channel). Информация по этому каналу передается каждым узлом B, чтобы UE были способны поддерживать синхронизацию. Дополнительно эта информация должна быть использована для того, чтобы UE могли определить лучшую соту при перемещении.

Канал индикации вхождения в синхронизм (AICH — Acquisition Indicator Channel). AICH используется, чтобы сообщить UE сведения о канале данных (DCH). Может применяться для связи с узлом B — такое назначение канала возникает в результате успешного запроса службы произвольного доступа от UE.

Физический совместно используемый канал (PDSCH — Physical Downlink Shared Channel) (от станции к UE). Этот канал совместно используется для пересылки управляющей информации к UE в пределах области охвата узла B.

Канал синхронизации (SCH — Synchronizing Channel), канал синхронизации используется UE с общим каналом пилот-сигнала (CPICH —Common Pilot Channel). Информация по этому каналу передается каждым узлом B, чтобы UEs могли поддерживать синхронизацию для демодуляции сигналов. Дополнительно они могут применяться как средство определения UE лучшей соты при перемещении.

Канал индикации вызова (PICH — Paging Indication Channel). Этот канал обеспечивает информацией UE в неактивном состоянии и обеспечивает сохранность ресурсов батареи при слежении в этом режиме за широковещательным каналом вызова (Paging Channel). PICH обеспечивает UE в момент дезактивации UE.

Канал индикации состояния (CSICH — CPCH Status Indication Channel). Этот канал, который применяется только по направлению от станции к UE для передачи состояния CPCH и может также использоваться для передачи излишней нагрузки при ее всплеске или прерывистом характере.

Обнаружение конфликтов / Канал индикации назначения канала (CD/CA-ICH — Collision Detection / Channel Assignment Indication Channel). Этот канал используется в направлении от станции к UE, чтобы указать, можно ли использовать этот канал сразу или требуется активация канала.

Читайте про операторов:  Мобильная связь и операторы Грузии

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *