Как работают GSM-сети или краткие основы связи

1g – аналоговые соты

Концепция запущена (1979 год) японской компанией Ниппон телеграф и телефон (NTT), охватив метрополию Токио. Выполнив план пятилетки, инженеры покрыли сеткой острова архипелага. 1981 считается годом рождения датской, финской, норвежской, шведской систем связи NMT.

Единый стандарт помог реализовать международный роуминг. США выжидал 2 года, лицезря европейские успехи. Затем чикагский провайдер Америтех, используя аппараты Моторола, начал захват рынка. Последовали аналогичные шаги со стороны Мексики, Канады, Великобритании, России.

Северная Америка (13 октября 1983 – 2008 г.г.), Австралия (28 февраля 1986, Телеком), Канада широко использовали AMPS; Великобритания – TACS; Западная Германия, Португалия, Южная Африка – С-450; Франция – Радиоком 2000; Испания – ТМА; Италия – RTMI. Японцы плодили стандарты неимоверно быстро: TZ-801, TZ-802, TZ-803. Конкурент NTT создал систему JTACS.

Стандарт включает цифровой вызов станции, однако передача информации полностью аналоговая (модулированный сигнал ДМВ выше 150 МГц). Шифрование отсутствовало напрочь, набивая монетой карманы частных детективов. Частотное деление каналов оставляло место незаконному клонированию устройств.

Как работают GSM-сети или краткие основы связи
Мобильник DynaTAC 8000X Америтех

6 марта 1983 запущена разработка мобильника DynaTAC 8000X Америтех, стоившая компании состояние. Целое десятилетие устройство силилось достигнуть прилавки магазинов. Список желающих подписаться исчислялся тысячами индивидов, невзирая на явные недостатки:

  • Время жизни батареи.
  • Габариты.
  • Быстрая разрядка.

Поколение телефонов позже успешно модернизировали, обеспечивая апгрейд к поколению 2G.

2g – цифровая связь

Появлением второй ступени развития отмечено начало 90-х. Сразу обозначились два главных конкурента:

  1. Европейский GSM.
  2. Американский CDMA.

Ключевые отличия:

  1. Цифровая передача информации.
  2. Внеполосный вызов вышки телефоном.

Эру 2G называют эпохой заказанных телефонов. Покупателей слишком много, производитель заранее собирал списки желающих. Первой сеть Радиолиния запустила Финляндия. Европейские частоты исторически выше американских, некоторые диапазоны 1G и 2G (900 МГц) накладываются. Устаревшие системы ускоренно закрывали. Американский IS-54 захватил прежние ресурсы AMPS.

IBM Simon принято считать первым смартфоном: мобильник, пейджер, факс, PDA. Программный интерфейс предоставлял календарь, адресную книгу, часы, калькулятор, блокнот, электронную почту, опцию предсказания следующего символа наподобие Т9. Тачскрин обеспечивал управление клавиатурой QWERTY. Комплект дополнял стилус. Карта памяти PCMCIA ёмкостью 1,8 МБ расширяла функционал.

Как работают GSM-сети или краткие основы связи
2G сотовая связь

Наметилась тенденция минимизации аппаратов. Кирпичи начинали весить 100-200 г. Впервые оценены публикой СМС-сообщения. Первый (сгенерированный автоматически) GSM-текст послали 2 декабря 1992 года, в 1993 – произвели опробирование люди. Метод пакетной предоплаты вскоре сделал СМС общение популярной молодёжной забавой. Позже страсть охватила старшие поколения.

Появлением сервиса мобильных платежей (автоматы Кока-Кола, парковки), выходом платного медиаконтента ознаменован 1998 год: провайдером Радиолиния (ныне Элиза) продан первый рингтон. Изначально новостные подписки (2000 г.) распространяли бесплатно, сервис оплачивали рекламными взносами спонсоров.

3g, 3.5g, 3.75g… и 2.75g тоже

В дополнение к вышеупомянутым требованиям к скорости передачи данных, спецификации 3G призывали обеспечить легкую миграцию с сетей второго поколения. Для этого, стандарт, называемый UMTS стал топовым выбором для операторов GSM, а стандарт CDMA2000 обеспечивал обратную совместимость.

После прецедента с GPRS, стандарт CDMA2000 предлагает собственную технологию непрерывной передачи данных, называемую 1xRTT. Смущает то, что, хотя официально CDMA2000 является стандартом 3G, он обеспечивает скорость передачи данных лишь немногим больше, чем GPRS — около 100 кБит/с.

Стандарт EDGE — Enhanced Data-rates for GSM Evolution — был задуман как легкий способ операторов сетей GSM выжать дополнительные соки из 2.5G установок, не вкладывая серьезные деньги в обновление оборудования. С помощью телефона, поддерживающего EDGE, вы могли бы получить скорость, в два раза превышающую GPRS, что вполне неплохо для того времени. Многие европейские операторы не стали возиться с EDGE и были приверженцами внедрения UMTS.

Итак, куда же отнести EDGE? Это не так быстро, как UMTS или EV-DO, так что вы можете сказать, что это не 3G. Но это явно быстрее, чем GPRS, что означает, что она должна быть лучше, чем 2.5G, не так ли? Действительно, многие люди назвали бы EDGE технологией 2.75G.

Спустя десятилетие, сети CDMA2000 получили обновление до EV-DO Revision A, которая предлагает немного более высокую входящую скорость и намного выше исходящую скорость. В оригинальной спецификации, которая называется EV-DO Revision 0, исходящая скорость ограничена на уровне 150 кБит/с, новая версия позволяет делать это в десять раз быстрее.

Дальнейшие усовершенствования UMTS будут использовать HSPA , dual-carrier HSPA , и HSPA Evolution, которые теоретически обеспечат пропускную способность от 14 МБит/с до ошеломительных 600 МБит/с. Итак, можно ли сказать что мы попали в новое поколение, или это можно назвать 3.75G по аналогии с EDGE и 2.75G?

Csd и hscsd

Изначально сети стандарта GSM предусматривали пакетную передачу данных по коммутируемым соединениям. Этот сервис назывался CSD (Circuit Switched Data). Максимально возможная скорость передачи данных для CSD составляла не более 9,6 кбит/с. Такой скорости было достаточно для реализации услуги передачи факсов (низкого разрешения) и небольших объемов данных.

С ростом интереса к услуге передачи данных через сотовые системы связи технология CSD была усовершенствована, и в сетях сотовой связи началось применение технологии HSCSD (High Speed Circuit Switch Data высокоскоростная передача данных по коммутируемым соединениям).

В сервисах СSD и HSCSD тарификация осуществлялась по времени, затраченному на передачу данных. Стоимость трафика была велика и равнялась стоимости голосового трафика. Таким образом, эта технология практического интереса не представляла.

Технология передачи данных по коммутируемым соединениям имеет существенный недостаток: необходимость устанавливать соединение на все время сессии абонента, при этом использование канала составляет менее 50%. Таким образом, сервисы СSD и HSCSD не позволяют эффективно использовать ценные радиоресурсы.

Решением этой проблемы стал пакетный способ передачи данных. При этом для всех абонентов, которым необходима услуга передачи данных, предоставляется общий ресурс в соте, который используется ими по необходимости и именно тогда, когда они передают данные, а в моменты простоя этот ресурс используется другими абонентами.

Nb-lte

NB-LTE узкополосный (Narrow Band) LTE для IoT-приложений еще одно подмножество стандарта LTE, которое планируется закрепить в 3GPP LTE Rel.13 в начале 2022 г. NB-LTE предназначен для разнообразных IoT-применений, которые отличает низкое потребление трафика. NB-LTE, как ожидается, будут отличать еще более скромные потребности по части ресурсов, нежели LTE Cat.1, Cat.0 и LTE MTC.

Ожидаемая спецификация: 180 кГц полоса частот для UL и DL (для LTE MTC 1 МГц), в DL используется 15 кГц частот и модуляция OFDMA, 3,75 кГц защитный интервал, в UL задействован FDMA или GMSK, как опция может быть SC-FDMA.

Ожидается улучшенное покрытие в помещениях, возможность обслужить множество устройств с низким потреблением трафика, особенно таких, которые не слишком чувствительны к задержкам. Узкополосность позволяет изготавливать недорогие чипсеты и устройства с очень низким энергопотреблением, что должно обеспечить длительную работу устройств от батарей питания (типа большого серебряно-цинкового элемента или щелочного элемента AAA), вплоть до года или более.

Стандарт можно будет внедрить на обычных сетях LTE за счет выделения нескольких ресурсных блоков или за счет использования блоков в защитном диапазоне LTE. В принципе возможно и изолированное развертывание сети NB-LTE в выделенном для этого участке спектра.

Стандарту прочат широкое использование, так как, в отличие от различных аналогов, он поддерживается 3GPP. Есть, правда, опасение, что к моменту выхода конечной версии Rel.13 с NB-LTE не успеют, тогда он будет стандартизован в Rel.14. А вот LTE MTC войдет в Rel.

Алгоритмы функционирования систем сотовой связи

Не смотря на разнообразие стандартов сотовой связи, алгоритмы их функционирования в основном сходны. Для абонента практически нет разницы, в каком стандарте осуществляется связь. Если ему нужно позвонить, то он просто нажимает клавишу на своём телефоне, что соответствует снятию трубки обычного телефона.

Когда же радиотелефон находится в режиме ожидания (состояние “трубка положена” обычного телефона), его приёмное устройство постоянно сканирует (просматривает) либо все каналы системы, либо только управляющие. Для вызова соответствующего абонента всеми базовыми станциями сотовой системы связи по управляющим каналам передаётся сигнал вызова.

Сотовый телефон вызываемого абонента при получении этого сигнала отвечает по одному из свободных каналов управления. Базовые станции, принявшие ответный сигнал, передают информацию о его параметрах в центр коммутации, который, в свою очередь, переключает разговор на ту базовую станцию, где зафиксирован максимальный уровень сигнала сотового телефона вызываемого абонента.

Во время набора номера радиотелефон занимает один из свободных каналов, уровень сигнала базовой станции в котором в данный момент максимален. По мере удаления абонента от базовой станции или в связи с ухудшением условий распространения радиоволн уровень сигнала уменьшается, что ведёт к ухудшению качества связи.

Улучшение качества разговора достигается путём автоматического переключения абонента на другой канал связи. Это происходит следующим образом. Специальная процедура, называемая передачей управления вызовом или эстафетной передачей (в иностранной литературе – handover, или handoff), позволяет переключить разговор на свободный канал другой базовой станции, в зоне действия которой оказался в это время абонент.

Аналогичные действия предпринимаются при снижении качества связи из-за влияния помех или при возникновении неисправностей коммутационного оборудования. Для контроля таких ситуаций базовая станция снабжена специальным приёмником, периодически измеряющим уровень сигнала сотового телефона разговаривающего абонента и сравнивающим его с допустимым пределом.

Если уровень сигнала меньше этого предела, то информация об этом автоматически передаётся в центр коммутации по служебному каналу связи. Центр коммутации выдаёт команду об измерении уровня сигнала сотового радиотелефона абонента на ближайшие к нему базовые станции.

После получения информации от базовых станций об уровне этого сигнала центр коммутации переключает радиотелефон на ту из них, где уровень сигнала оказался наибольшим. Переключение производится так быстро, что абонент совершенно не замечает этих переключений.

Иногда возникает ситуация, когда поток заявок на обслуживание, поступающий от абонентов сотовой сети, превышает количество каналов, имеющихся на всех близко расположенных базовых станциях. Это происходит тогда, кода все каналы станций заняты обслуживанием абонентов и нет ни одного свободного, но поступает очередная заявка на обслуживание от подвижного абонента.

В этом случае как временная мера (до освобождения одного из каналов) используется принцип эстафетной передачи внутри соты. При этом происходит поочерёдное переключение каналов в пределах одной и той же базовой станции для обеспечения связью всех абонентов.

Одна из важных услуг сетей сотовой связи – предоставление возможности использования одного и того же радиотелефона при поездке в другой город, область или страну, причём сотовая сеть позволяет не только самому абоненту звонить из другого города или страны, но и получать звонки от тех, кто ему звонит.

В сотовой связи такая возможность называется роуминг (от англ. roam – скитаться, блуждать). Для организации роуминга сотовые сети должны быть одного стандарта (например, телефон стандарта GSM не будет работать в сети стандарта CDMA и т.п.), а центры коммутации подвижной связи этого стандарта должны быть соединены специальными каналами связи для обмена данными о местонахождении абонента. Т.е. для обеспечения роуминга в сотовых сетях необходимо выполнение трёх условий:

  • наличие в требуемых регионах сотовых систем стандарта, совместимого со стандартом компании, у которой подключен данный радиотелефон;
  • наличие соответствующих организационных и экономических соглашений о роуминговом обслуживании абонентов;
  • наличие каналов связи между системами, обеспечивающими передачу звуковой и другой информации для роуминговых абонентов.

При перемещении абонента в другую сеть её центр коммутации запрашивает информацию в первоначальной сети и при наличии подтверждения полномочий абонента регистрирует его. Данные о местоположении абонента постоянно обновляются в центре коммутации первоначальной сети, и все поступающие туда вызовы автоматически переадресовываются в ту сеть, где в данный момент находится абонент.

При организации роуминга не достаточно провести только технические мероприятия по соединению различных сетей сотовой связи. Очень важно ещё решить проблему взаиморасчётов между операторами этих сетей.

Различают три вида роуминга:

  • автоматический, т.е. предоставление абоненту возможности выйти на связь “в любое время в любом месте”;
  • полуавтоматический, когда абоненту для пользования данной услугой в каком-либо регионе необходимо предварительно поставить об этом в известность своего оператора;
  • ручной, по сути, простой обмен одного радиотелефона на другой, подключенный к сотовой системе другого оператора.

Существующий объём услуг роуминга во многом определяется активностью деятельности конкретных компаний, так как возникающие при этом технические проблемы у всех приблизительно одинаковы (хотя в стандарте GSM услуга роуминга была заложена изначально). Перспективы развития этой сферы услуг зависят уже от распространённости стандартов.

Например, для создания единой сети стандарта GSM в России, предлагающей услуги роуминга в национальном масштабе, требуется организация связи с каждым региональным оператором. Кроме того, для передачи служебных сообщений необходим, как минимум, выделенный цифровой канал со скоростью передачи информации 64 Кбит/с.

Виды телефонов.

Сотовый (мобильный) телефон – абонентский терминал, работающий в сотовой сети. По сути, каждый сотовый телефон является специализированным компьютером, который ориентирован, в первую очередь, на обеспечение (в зоне покрытия домашней или гостевой сети) голосового общения абонентов, но также поддерживает обмен текстовыми и мультимедийными сообщениями, снабжен модемом и упрощенным интерфейсом. Передачу голоса и данных современные мобильные телефоны обеспечивают в цифровой форме.

Раннее существовавшее разделение аппаратов на «недорогие», «функциональные», «бизнес-» и «имиджевые» модели все больше теряет смысл – бизнес-аппараты приобретают черты имиджевых моделей и развлекательные функции, в результате использования аксессуаров недорогие телефоны становятся имиджевыми, а у имиджевых быстро растет функциональность.

Миниатюризация трубок, пик которой пришелся на 1999–2000, завершилась по вполне объективным причинам: аппараты достигли оптимального размера, дальнейшее их уменьшение делает неудобным нажатие кнопок, чтение текста на экране и т.д. Зато сотовый телефон стал настоящим предметом искусства: к разработке внешнего вида аппаратов привлекают ведущих дизайнеров, а владельцам предоставляются широкие возможности персонифицировать свои аппараты самостоятельно.

В настоящее время производители уделяют особое внимание функциональности мобильных телефонов, причем как основным (увеличивается время автономной работы, улучшаются экраны и т.д.), так и дополнительным их возможностям (в аппараты встраивают цифровые фотокамеры, диктофоны, МР3-плееры и прочие «сопутствующие» устройства).

Практически все современные аппараты, за исключением некоторых моделей нижнего ценового диапазона, позволяют загружать программы. Большинство аппаратов может исполнять Java-приложения, увеличивается количество телефонов, использующих операционные системы, унаследованные от КПК или портированные с них:

В качестве абонентских терминалов сегодня могут использоваться также коммуникаторы – карманные компьютеры, снабженные модулем с поддержкой GSM/GPRS, а иногда EDGE и стандартов третьего поколения.

Как появилась сотовая связь

Впервые идея сотовой связи была выдвинута в 1947 году — над
ней работали инженеры из Bell Labs Дуглас Ринг и Рэй Янг. Однако реальные
перспективы ее воплощения стали вырисовываться только к началу 1970-х годов,
когда сотрудники компании разработали рабочую архитектуру аппаратной платформы
сотовой связи.

Так, американские инженеры предложили размещать передающие
станции не в центре, а по углам «ячеек», а чуть позже была придумана технология,
позволяющая абонентам передвигаться между этими «сотами», не прерывая связи.
После этого осталось разработать действующее оборудование для такой технологии.

Задачу успешно решила компания Motorola — ее инженер Мартин
Купер 3 апреля 1973 года продемонстрировал первый работающий прототип
мобильного телефона. Он позвонил начальнику исследовательского отдела
компании-конкурента прямо с улицы и рассказал ему о собственных успехах.

Руководство Motorola немедленно вложило в перспективный
проект 100 миллионов долларов, однако на коммерческий рынок технология вышла
только через десять лет. Такая задержка связана с тем, что сначала требовалось
создать глобальную инфраструктуру
базовых станций сотовой связи.


На территории США этой работой занялась компания AT&T — телекоммуникационный
гигант добился от федерального правительства лицензирования нужных частот и
построил первую сотовую сеть, которая охватила крупнейшие американские города.
В качестве первого мобильника выступила знаменитая модель Motorola DynaTAC 8000.

В продажу первый сотовый телефон поступил 6 марта 1983 года.
Он весил почти 800 граммов, мог работать
на одном заряде 30 минут в режиме разговора и заряжался около 10 часов. При
этом аппарат стоил 3995 долларов — баснословную сумму по тем временам. Несмотря
на это, мобильник мгновенно стал популярен.

Какой оператор связи лучше

Как работают GSM-сети или краткие основы связи
Определиться с выбором лучшего оператора основываясь только на количестве базовых станций, которые он имеет, неверно. Ведь стандартов связи становится больше и все они имеют свою специфику: 2G для голоса, 3G/4G и их промежуточные версии для передачи данных, а также голоса (3G , а также появляется Voice over LTE). В теории выигрыш у того оператора, что имеет сбалансированное число как станций 2G, которые обеспечивают хорошее покрытие голоса и SMS, так и 3G/4G-станций. Поэтому любой оператор в отдельных точках может быть как очень хорошим, так и очень плохим.
Маркетинговые термины про 4G, 4G сегодня не гарантируют качество связи. Важно понимать, какие скорости достижимы на практике и в чем есть подводные камни. Насколько хорошо работает голосовая связь. Наличие у оператора низких частот обеспечит «пробивную способность» сигнала. Формально получается, что чем больше стандартов поддерживает ваш оператор, тем больше вероятность того, что вы не останетесь без связи.

Конечно же стоит учитывать число базовых станций и количество современных станций, которые объединены высокоскоростной оптикой для тех, кто частно разъезжает по миру. Среди операторов можно отметить Мегафон, которая активно и первой развивает станции новых поколений, и имеет максимальный частотный ресурс. Компания подобралась к теоретическому максимуму базовых станций для всех территорий в России.

Общий вывод

Чем больше в вашем телефоне поддерживаемых стандартов и чем больше их у вашего оператора, тем надежнее в большинстве случаев связь, особенно это касается мобильного интернета.

Многодиапазонные антенны

С развитием сетей связи третьего и четвертого поколений требуется модернизация антенной части как базовых станций, так и сотовых телефонов. Антенны должны работать в новых дополнительных диапазонах, превышающих 2.2 ГГц. 

В качестве примера рассмотрим конструкцию излучателей двухдиапазонной антенны базовой станции сотовой связи Powerwave, работающей в диапазонах 824-960, МГц и 1710-2170, МГц. Ее внешний вид показан на рисунке ниже:

Этот двухдиапазонный облучатель состоит из двух металлических пластин. Та, что большего размера работает в нижнем диапазоне 900 МГц, над ней расположена пластина с щелевым излучателем меньшего размера. Обе антенны возбуждаются щелевыми излучателями и таким образом имеют единую линию запитки.

Если в качестве излучателей используются дипольные антенны, то необходимо ставить отдельный диполь для каждого диапазона волн. Отдельные диполи должны иметь свою линию запитки, что, конечно же, снижает общую надежность системы и увеличивает энергопотребление. Примером такой конструкции является антенна Kathrein. Проектирование многодиапазонной антенны производят поэтапно.

Широкополосная антенна типа “бабочка” может быть удачно использована как основа для трехдиапазонной печатной антенны. На рисунке ниже изображены четыре различных варианта ее конфигурации.

Приведенные конструкции антенн отличаются формой реактивного элемента, который применяется для расширения рабочей полосы частот по согласованию. Каждый слой такой трехдиапазонной антенны представляет собой микрополосковый излучатель заданных геометрических размеров. Чем ниже частоты – тем больше относительный размер такого излучателя.

Таким образом, диполи для нижнего диапазона частот находятся как бы внутри диполей верхнего диапазона.

Для реализации трех- и более диапазонного режимов работы наибольшей технологичностью обладают печатные многослойные антенны. В таких антеннах каждый новый слой работает в довольно узком диапазоне частот. Такая “многоэтажная” конструкция изготавливается из печатных антенн с индивидуальными излучателями.

Препятствия в развитии сотовой связи

К сожалению, экономические соображения сделали нецелесообразной концепцию создания полных систем со многими небольшими участками. Чтобы преодолеть эту трудность, системные операторы разработали идею расщепления клеток. Когда зона обслуживания становится заполненной пользователями, этот подход используется для разделения одной зоны на более мелкие.

Таким образом, городские центры могут быть разбиты на столько областей, сколько необходимо для обеспечения приемлемого уровня обслуживания в регионах с интенсивным движением, в то время как более крупные и менее дорогие ячейки могут использоваться для покрытия отдаленных сельских районов.

Последнее препятствие в развитии сотовой сети связано с проблемой, возникшей, когда абонент сотовой связи во время вызова перемещался из одной ячейки в другую. Поскольку соседние зоны не используют одни и те же радиоканалы, вызов должен быть либо отброшен, либо переведен с одного радиоканала на другой, когда пользователь пересекает линию между соседними ячейками.

Поскольку сбрасывание вызова недопустимо, был создан процесс передачи обслуживания. Передача обслуживания происходит, когда сеть мобильной телефонной связи автоматически переводит вызов в другой радиоканал, когда мобильное устройство пересекает соседние ячейки.

Во время разговора две стороны находятся на одном голосовом канале. Когда мобильное устройство выходит из зоны покрытия данного сотового узла, прием становится слабым. На этом этапе используемый сотовый сайт запрашивает передачу обслуживания. Система переключает вызов на более высокочастотный канал на новом сайте, не прерывая вызов и не предупреждая пользователя. Вызов продолжается до тех пор, пока пользователь разговаривает, и абонент не замечает передачи обслуживания.

Система мобильной коммуникации с использованием концепции сотовой связи

Проблемы с помехами, вызванные мобильными устройствами, использующими один и тот же канал в смежных областях, доказали, что все каналы не могут повторно использоваться в каждой соте. Несмотря на то что это повлияло на эффективность первоначальной концепции, повторное использование частот стало жизнеспособным решением проблем систем мобильной телефонии.

Инженеры обнаружили, что влияние помех было связано не с расстоянием между зонами, а с отношением расстояния к мощности (радиусу) передатчиков зон. Сокращая радиус зоны на пятьдесят процентов, поставщики услуг могут увеличить число потенциальных клиентов в зоне в четыре раза.

Системы, основанные на областях с радиусом в один километр, будут иметь в сто раз больше каналов, чем системы с областями в радиусе десяти километров. Спекуляция привела к выводу, что, уменьшив радиус зоны до нескольких сотен метров, можно было обслуживать миллионы звонков.

Концепция сотовой связи использует переменные уровни низкой мощности, что позволяет подбирать ячейки в соответствии с плотностью абонента и потребностями данной области. По мере роста популяции можно добавлять ячейки для приспособления к этому росту.

Частоты сотовой связи, используемые в одном кластере ячеек, могут быть повторно использованы в других ячейках. Разговоры могут передаваться из ячейки в ячейку, чтобы поддерживать постоянную телефонную связь, когда пользователь перемещается между ними.

Сотовое радиооборудование (базовая станция) может связываться с мобильными телефонами, пока они находятся в пределах досягаемости. Радиоэнергия рассеивается на расстоянии, поэтому мобильные телефоны должны находиться в пределах рабочего диапазона базовой станции. Как и ранняя система мобильной радиосвязи, базовая станция связывается с мобильными телефонами через канал.

Канал состоит из двух частот: одна для передачи на базовую станцию ​​и одна для приема информации от базовой станции.

Читайте про операторов:  Код 968, оператор и регион, какие операторы используют код 968

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *