UMTS – Краткое руководство –

C / i расчеты и ‘q’

Значение «q» также зависит от C / I. «C» – это мощность принимаемой несущей от желаемого передатчика, а «I» – помехи в совмещенном канале, полученные от всех мешающих ячеек. Для схемы повторного использования из семи ячеек количество ячеек, создающих помехи в канале, должно быть шесть.

I = m2b∑Mz1I m

Потеря сигнала пропорциональна (расстоянию) –r

R – постоянная распространения.

c α Rr

R = радиус ячейки.

I α 6 Dr

D = расстояние между каналами

C / I = R – r / 6D –r = 1/6 × Dr / Rr = 1/6 (D / R) r

C / I = 1/6 qr, так как q = D / R и qr = 6 C / I

Q = [6 × C / I] 1 / r

На основании приемлемого качества голоса значение C / I оказалось равным 18 дБ.

Предполагая,

  • Шаблон повторного использования из семи ячеек
  • Всенаправленные антенны

Значение ‘q’ обычно может быть около 4.6.

Значение r принимается за 3.

Это идеальное условие, учитывая, что расстояние мобильных блоков от мешающих ячеек во всех случаях равно равно «D». Но практически подвижные ходы и расстояние «D» сокращаются до «D-R», когда он достигает границы ячейки, а C / I падает до 14,47 дБ.

Следовательно, схема повторного использования ‘freq’, равная 7, не соответствует критериям C / I для всенаправленных антенн.

Если N = 9 (или) 12,

N = 9q = 5,2C / I = 19,78 дБ

N = 12q = 6,0C / I = 22,54 дБ

Следовательно, схема с 9 или 12 ячейками должна быть со всенаправленными антеннами, но пропускная способность трафика снижается. Следовательно, они не являются предпочтительными.

Чтобы использовать N = 7 (или ниже), направленные антенны используются в каждой ячейке ячейки. Ячейка с 3 секторами очень популярна и будет выглядеть так, как показано на рисунке ниже.

Феномен антенной шрифта и обратной связи уменьшает количество потенциальных источников помех.

Например, если N = 7.

В случае всенаправленных антенн число мешающих ячеек должно быть шесть. С направленными антеннами и 3 секторами то же самое уменьшается до двух. Для N = 7 и трех секторов C / I улучшается с 14,47 дБ до 24,5 дБ даже в худших условиях.

Для городских приложений N = 4 и используется трехсекторная сота, так что получается большее количество несущих на соту, чем N = 7. Кроме того, C / I становится 20 дБ в худших случаях.

DAMPS использует 7/21 шаблон ячейки

GSM использует шаблон ячеек 4/21

Umts – hspa стандартизация

Давайте кратко рассмотрим график стандартизации и развертывания HSPA –

  • Высокоскоростной пакетный доступ по нисходящей линии связи (HSDPA) был стандартизирован как часть 3GPP Release 5 с первой версией спецификации в марте 2002 года.

  • Высокоскоростной пакетный доступ по восходящей линии связи (HSUPA) был частью 3GPP Release 6 с первой версией спецификации в декабре 2004 года.

  • HSDPA и HSUPA вместе называются высокоскоростным пакетным доступом (HSPA).

  • Первые коммерческие сети HSDPA были доступны в конце 2005 года, а коммерческие сети HSUPA были доступны в 2007 году.

  • Пиковая скорость передачи данных HSDPA, доступная в терминалах, первоначально составляет 1,8 Мбит / с и увеличится до 3,6 и 7,2 Мбит / с в течение 2006 и 2007 гг., А затем – до 10 Мбит / с и более 10 Мбит / с.

  • Пиковая скорость передачи данных HSUPA в начальной фазе составляла 1–2 Мбит / с, а во второй фазе – 3–4 Мбит / с.

Высокоскоростной пакетный доступ по нисходящей линии связи (HSDPA) был стандартизирован как часть 3GPP Release 5 с первой версией спецификации в марте 2002 года.

Высокоскоростной пакетный доступ по восходящей линии связи (HSUPA) был частью 3GPP Release 6 с первой версией спецификации в декабре 2004 года.

HSDPA и HSUPA вместе называются высокоскоростным пакетным доступом (HSPA).

Первые коммерческие сети HSDPA были доступны в конце 2005 года, а коммерческие сети HSUPA были доступны в 2007 году.

Пиковая скорость передачи данных HSDPA, доступная в терминалах, первоначально составляет 1,8 Мбит / с и увеличится до 3,6 и 7,2 Мбит / с в течение 2006 и 2007 гг., А затем – до 10 Мбит / с и более 10 Мбит / с.

Пиковая скорость передачи данных HSUPA в начальной фазе составляла 1–2 Мбит / с, а во второй фазе – 3–4 Мбит / с.

HSPA развернут в сети WCDMA на той же несущей или – для решения с высокой пропускной способностью и высокой скоростью – с использованием другой несущей, см. Рисунок выше. В обоих случаях WCDMA и HSPA могут совместно использовать все элементы сети в базовой сети и радиосети, содержащей базовые станции, контроллер радиосети (RNC), обслуживающий узел поддержки GPRS (SGSN) и узел поддержки шлюза GPRS (GGSN). WCDMA и HSPA также совместно используют антенны базовой станции и антенные кабели.

Обновление WCDMA HSPA требует нового программного обеспечения и, возможно, нового оборудования в базовой станции и RNC для поддержки скорости и большей емкости данных. Из-за общей инфраструктуры между WCDMA и HSPA стоимость обновления WCDMA HSPA очень низкая по сравнению со строительством новой автономной сети передачи данных.

Umts – сеть радиодоступа

Более общий термин «развитая сеть радиодоступа» (eRAN) также может использоваться как часть протоколов сигнализации, так как может использоваться термин «уровень доступа» (AS). Сравнение показывает, что E-UTRAN состоит из одного типа узлов, а именно развитого узла B (eNodeB), и разнообразие соединений сведено к минимуму. eNodeB является базовой радиостанцией и передает / принимает через свою антенну в области (соте), ограниченной физическими факторами (уровень сигнала, условия помех и условия распространения радиоволн).

Указатель на ссылку ЕС (которая включает в себя интерфейс линии радиосвязи и границы стека протоколов мобильной сети) называется “LTE-U u”, чтобы указывать, что он отличается от унаследованного дублирующего соединения EU X2 соседних eNodeB. Они могут рассматриваться для большей части E-UTRAN и используются в большинстве случаев хэндоверов между радиоячейками.

Когда UE перемещается, подготовка к длительной передаче обслуживания выполняется посредством сигнализации, через X2 между двумя eNodeB данных, и затронутые пользователи могут передаваться между ними в течение короткого периода времени. Только в особых случаях может случиться, что X2 не настроен для eNodeB между двумя соседями.

Более подробно, функции, выполняемые eNodeB:

  • Управление радиоресурсами: управление радиоканалом, управление радиоприемом, мобильность управления соединением, динамическое распределение ресурсов (т. Е. Планирование) для UES в качестве восходящей линии связи и нисходящей линии связи.

  • Сжатие заголовка IP и шифрование потока пользовательских данных.

  • Пересылка пакетов данных пользовательской плоскости в EPC (особенно, к услуге узла GW).

  • Маркировка пакетов транспортного уровня в восходящей линии связи, например, установка кодовой точки DiffServ на основе индекса класса QoS (QCI) связанного канала-носителя EPS.
  • Планирование и доставка пейджинговых сообщений (по запросу MS).

  • Планирование и передача широковещательной информации (происхождение MME или O & M).

  • Конфигурация измерений обеспечивает доставку и отчетность о степени мобильности и программирования.

Управление радиоресурсами: управление радиоканалом, управление радиоприемом, мобильность управления соединением, динамическое распределение ресурсов (т. Е. Планирование) для UES в качестве восходящей линии связи и нисходящей линии связи.

Сжатие заголовка IP и шифрование потока пользовательских данных.

Пересылка пакетов данных пользовательской плоскости в EPC (особенно, к услуге узла GW).

Планирование и доставка пейджинговых сообщений (по запросу MS).

Планирование и передача широковещательной информации (происхождение MME или O & M).

Конфигурация измерений обеспечивает доставку и отчетность о степени мобильности и программирования.

Umts – успех и ограничения

История успеха GSM (2G) является исключительной. Чтобы облегчить передачу данных, некоторые расширения были сделаны в существующем GSM, но успех был ограничен. GPRS был введен для мобильных пользователей для пакетных данных, базовая скорость передачи данных выросла до 172 Кбит / с в теории, но вряд ли выделил максимум 8 логических каналов для пользователя. GPRS имеет концепцию двухступенчатого доступа к IP-соединению.

Первый шаг – подключиться и зарегистрироваться в сети. Для этого передача пользовательских данных требует создания среды PDP (Packet Data Protocol). На данный момент назначается только IP-адрес. GPRS также известен как сеть 2.5G.

Как для GSM / CS (коммутация каналов), так и для GPRS / PS (коммутация пакетов) были предприняты постоянные усилия по оптимизации на основе более высокой эффективности модуляции в рамках EDGE (расширенные скорости передачи данных для эволюции GSM), но ничего принципиально не изменилось.

Следующее поколение мобильных сетей 3G (UMTS) построено на новой технологии радиосвязи, известной как WCDMS (широкополосный CDMA), и это обеспечило две вещи –

  • Большая пропускная способность благодаря новому радиоспектру;
  • Более высокие пиковые скорости передачи данных для конечного пользователя.

Архитектура сети UMTS была разработана для параллельной работы как CS, так и PS. Позже был создан совершенно другой уровень обслуживания в виде подсистемы Интернета и мультимедиа (IMS). UMTS был последним улучшенным для более высоких скоростей передачи данных HSPA и HSPA .

Это было разделено на нисходящую линию / HSDPA и восходящую линию / HSUPA. 3GPP Rel 5 стандартизирован для HSDPA, а Rel 6 стандартизирован для HSUPA. HSPA относится к Rel. 7 стандарт 3GPP.

Непрерывное улучшение было достигнуто уже в рамках устаревшей технологии PS благодаря подходу Direct Tunnel. Однако было ясно, что для достижения этой цели требуется больше изменений в архитектуре. Другой аспект усовершенствования унаследованной технологии может быть идентифицирован с помощью сверхъестественной эффективности, эффективного количества битов, доставляемых на единицу радиочастоты и единицу времени.

Абонент umts к сети umts

И сеть, и мобильная станция поддерживают все механизмы безопасности UMTS. Соглашение об аутентификации и ключах выглядит следующим образом:

  • Мобильная станция и базовая станция устанавливают соединение управления радиоресурсами (соединение RRC). Во время установления соединения мобильная станция отправляет свои возможности безопасности на базовую станцию. Функции безопасности включают в себя поддерживаемые алгоритмы целостности и шифрования UMTS и, возможно, возможности шифрования GSM.

  • Мобильная станция отправляет свой временный идентификатор TMSI в сеть.

  • Если сеть не может решить TMSI, он просит мобильную станцию ​​отправить свой постоянный идентификатор, а мобильные станции отвечают на запрос IMSI.

  • Посещенная сеть запрашивает аутентификацию домашней сети данных мобильной станции.

  • Домашняя сеть возвращает случайный вызов RAND, соответствующий токен аутентификации AUTN, аутентификация

  • Ответ XRES, ключ целостности IK и ключ шифрования CK.

  • Посещенная сеть отправляет запрос аутентификации RAND и токен аутентификации AUTN на мобильную станцию.

  • Мобильная станция проверяет AUTN и вычисляет ответ аутентификации. Если AUTN исправлено.

  • Мобильная станция игнорирует сообщение.

  • Мобильная станция отправляет свой ответ аутентификации RES в гостевую сеть.

  • Посещение сети проверяет, является ли RES = XRES, и решает, какие алгоритмы безопасности разрешено использовать радиоподсистеме.

  • Посещенная сеть отправляет алгоритмы, принятые в радиоподсистему.

  • Сеть радиодоступа решает разрешить использовать алгоритмы.

  • Сеть радиодоступа информирует мобильную станцию ​​об их выборе в командном сообщении режима безопасности.

  • Сообщение также включает в себя функции безопасности сети, полученные от мобильной станции на шаге 1.

  • Это сообщение защищено целостностью с помощью ключа целостности IK.

  • Мобильная станция подтверждает защиту целостности и проверяет точность функций безопасности.

Мобильная станция и базовая станция устанавливают соединение управления радиоресурсами (соединение RRC). Во время установления соединения мобильная станция отправляет свои возможности безопасности на базовую станцию. Функции безопасности включают в себя поддерживаемые алгоритмы целостности и шифрования UMTS и, возможно, возможности шифрования GSM.

Мобильная станция отправляет свой временный идентификатор TMSI в сеть.

Если сеть не может решить TMSI, он просит мобильную станцию ​​отправить свой постоянный идентификатор, а мобильные станции отвечают на запрос IMSI.

Посещенная сеть запрашивает аутентификацию домашней сети данных мобильной станции.

Домашняя сеть возвращает случайный вызов RAND, соответствующий токен аутентификации AUTN, аутентификация

Ответ XRES, ключ целостности IK и ключ шифрования CK.

Посещенная сеть отправляет запрос аутентификации RAND и токен аутентификации AUTN на мобильную станцию.

Мобильная станция проверяет AUTN и вычисляет ответ аутентификации. Если AUTN исправлено.

Мобильная станция игнорирует сообщение.

Мобильная станция отправляет свой ответ аутентификации RES в гостевую сеть.

Посещение сети проверяет, является ли RES = XRES, и решает, какие алгоритмы безопасности разрешено использовать радиоподсистеме.

Посещенная сеть отправляет алгоритмы, принятые в радиоподсистему.

Сеть радиодоступа решает разрешить использовать алгоритмы.

Сеть радиодоступа информирует мобильную станцию ​​об их выборе в командном сообщении режима безопасности.

Сообщение также включает в себя функции безопасности сети, полученные от мобильной станции на шаге 1.

Это сообщение защищено целостностью с помощью ключа целостности IK.

Мобильная станция подтверждает защиту целостности и проверяет точность функций безопасности.

Взаимодействие между epc и legacy

С самого начала было ясно, что система 3GPP Evolved будет беспрепятственно взаимодействовать с существующими системами 2G и 3G, широко используются 3GPP PS или, точнее, с базой GERAN и UTRAN GPRS (Для аспектов взаимодействия со старой системой CS для лечения оптимизированного голоса).

Вопрос базового архитектурного дизайна 2G / 3G в EPS заключается в расположении карты GGSN. Доступны две версии, и обе поддерживаются –

  • Используемый GW – это нормальный случай, когда обслуживание GW завершает плоскость пользователя (как видно в существующей сети GPRS).

    План управления завершен в MME, согласно распределению пользователей и плоскости управления в EPC. Введены опорные точки S3 и S4, и они основаны на GTP-U и GTP-C соответственно. S5 / S8 связан с GW PDN. Преимущество заключается в том, что совместимость является гладкой и оптимизированной. Недостатком является то, что для такого типа взаимодействия SGSN должен быть обновлен до Rel. 8 (из-за необходимой поддержки новых функций на S3 и S4).

  • PDN GW – в этом случае неизменное наследуемое контрольное значение Gn (при роуминге будет Gp) повторно используется между SGSN и PDN GW как для плоскости управления, так и для плоскости пользователя. Преимущество этого использования заключается в том, что SGSN может быть предварительно Rel. 8. Кроме того, он имеет определенные ограничения на версии IP, передачу и протокол S5 / S8.

Используемый GW – это нормальный случай, когда обслуживание GW завершает плоскость пользователя (как видно в существующей сети GPRS).

План управления завершен в MME, согласно распределению пользователей и плоскости управления в EPC. Введены опорные точки S3 и S4, и они основаны на GTP-U и GTP-C соответственно. S5 / S8 связан с GW PDN. Преимущество заключается в том, что совместимость является гладкой и оптимизированной.

PDN GW – в этом случае неизменное наследуемое контрольное значение Gn (при роуминге будет Gp) повторно используется между SGSN и PDN GW как для плоскости управления, так и для плоскости пользователя. Преимущество этого использования заключается в том, что SGSN может быть предварительно Rel. 8. Кроме того, он имеет определенные ограничения на версии IP, передачу и протокол S5 / S8.

Генеральная служба пакетной радиосвязи (gprs)

  • GPRS вводит передачу пакетных данных мобильному абоненту.

  • GPRS предназначен для работы в существующей инфраструктуре GSM с дополнительными узлами коммутации пакетов.

  • Этот метод пакетного режима использует технологию нескольких слотов вместе с поддержкой всех схем кодирования (от CS-1 до CS-4) для увеличения скорости передачи данных до 160 кбит / с.

  • Система GPRS использует физические радиоканалы, определенные для GSM. Физический канал, используемый GPRS, называется каналом пакетных данных (PDCH).

  • PDCH могут быть выделены для GPRS (выделенный PDCH) или использоваться GPRS, только если их не требует соединение с коммутацией каналов (по требованию). Оператор может определить 0-8 выделенных PDCH на соту. Оператор может указать, где он хочет, чтобы его PDCH были расположены.

  • Первый выделенный PDCH в ячейке всегда является главным PDCH (MPDCH). PDCH по требованию могут быть прерваны входящими вызовами с коммутацией каналов в ситуациях перегрузки в соте.

GPRS вводит передачу пакетных данных мобильному абоненту.

GPRS предназначен для работы в существующей инфраструктуре GSM с дополнительными узлами коммутации пакетов.

Этот метод пакетного режима использует технологию нескольких слотов вместе с поддержкой всех схем кодирования (от CS-1 до CS-4) для увеличения скорости передачи данных до 160 кбит / с.

Система GPRS использует физические радиоканалы, определенные для GSM. Физический канал, используемый GPRS, называется каналом пакетных данных (PDCH).

PDCH могут быть выделены для GPRS (выделенный PDCH) или использоваться GPRS, только если их не требует соединение с коммутацией каналов (по требованию). Оператор может определить 0-8 выделенных PDCH на соту. Оператор может указать, где он хочет, чтобы его PDCH были расположены.

Первый выделенный PDCH в ячейке всегда является главным PDCH (MPDCH). PDCH по требованию могут быть прерваны входящими вызовами с коммутацией каналов в ситуациях перегрузки в соте.

Схема кодирования Скорость (кбит / с)
CS-1 8,0
CS-2 12,0
CS-3 14,4
CS-4 20,0

Диаметр

Диаметр – это общий протокол AAA с дополнительными функциями для доступа к сети, мобильности и обработки QoS. Хотя это в принципе одноранговая сеть общего характера, она используется в архитектуре 3GPP в режиме клиент-сервер. Он имеет встроенную расширяемость и поэтому прекрасно поддерживает структуры сообщений на интерфейсах, что требует некоторой гибкости.

Кроме того, он поддерживает несколько конфигураций серверов с обработкой отказов и отказов. Функционально он имеет сходство с радиусом предшественника, но сильно отличается по уровню сообщений и параметров. ДИАМЕТР предлагает возможность обнаружить мертвого пира с помощью пар сообщений сердцебиения. Он может быть запущен через SCTP или TCP и использует порт 3868.

Протокол DIAMETER широко используется в EPC –

  • S6a для загрузки подписки и обновления между MME и HSS.

  • S6d (между обновленным SGSN и HSS), который является аналогом S6a для унаследованного мира с возможностью взаимодействия с новой системой.

  • S13 для проверки оборудования между MME и EIR.

  • SWa для аутентификации между ненадежным доступом не-3GPP и сервером AAA.

  • STa для аутентификации между доверенным доступом не-3GPP и сервером AAA и авторизацией.

  • SWd для пересылки между прокси-сервером AAA и сервером AAA (пересылка между VPLMN и HPLMN).

  • S6b для авторизации APN и мобильности между PDN GW и AAA-сервером.

  • SWm для аутентификации и авторизации между ePDG и AAA-сервером.

  • SWx для обмена вектором аутентификации и регистрационной информацией между сервером AAA и HSS.

  • Gx для обработки сеанса IP-CAN и обработки сеанса GW-Control между PDN GW и PCRF.

S6a для загрузки подписки и обновления между MME и HSS.

S6d (между обновленным SGSN и HSS), который является аналогом S6a для унаследованного мира с возможностью взаимодействия с новой системой.

S13 для проверки оборудования между MME и EIR.

SWa для аутентификации между ненадежным доступом не-3GPP и сервером AAA.

STa для аутентификации между доверенным доступом не-3GPP и сервером AAA и авторизацией.

SWd для пересылки между прокси-сервером AAA и сервером AAA (пересылка между VPLMN и HPLMN).

S6b для авторизации APN и мобильности между PDN GW и AAA-сервером.

SWm для аутентификации и авторизации между ePDG и AAA-сервером.

SWx для обмена вектором аутентификации и регистрационной информацией между сервером AAA и HSS.

Gx для обработки сеанса IP-CAN и обработки сеанса GW-Control между PDN GW и PCRF.

Как переключить тип сети

Когда вопрос «Режим сети GSM или WCDMA — что это?» решен, переходим к настройкам.

Чтобы переключить тип сети на нужный, выполните такие шаги:

  1. Зайдите в меню телефона.
  2. Найдите «Настройки».
  3. Выберите «Мобильные сети».
  4. В разделе «Тип» нужно выбрать оптимальный вариант.

Учтите, что не все смартфоны одинаково хорошо работают с разными режимами связи

GSM-Репитеры.РУ » UMTS и LTE частоты в России: стандарты нового поколения

Развитие стандартов GSM 900, GSM E900, GSM 1800 способствовало улучшению каналов коммуникации, однако не решало проблему доступа к интернету на том уровне, как того требует современный человек.

Эти стандарты относились ко второму поколению (2G), в котором для передачи данных использовались протоколы EDGE, GPRS, что позволяло достичь скорости до 473,6 Кбит/с – катастрофически низкой для современного пользователя.

На сегодняшний день стандарты сотовой связи одним из наиболее важных требований определяют скорость передачи данных и чистоту сигнала. Очевидно, что это влияет на развитие рынка мобильных операторов. Так в свое время в России появились 3G сети, которые завоевали массовое внимание пользователей. А теперь именно по этой причине увеличивается количество людей, которые выбирают 4G.

Особенность стандарта UMTS

Главная особенность, которая отличает стандарт UMTS от GSM, заключается в том, что использование протоколов WCDMA, HSPA , HSDPA дает возможность пользователям получить доступ к более качественному мобильному интернету. При скоростях от 2 до 21 Мбит/сек можно не только передавать больший объем данных, но даже совершать видео звонки.

UMTS покрывает более 120 крупнейших российских городов. Это стандарт, в котором популярные ныне мобильные операторы (МТС, Билайн, МегаФон и Скайлинк) предоставляют услугу 3G-интернета.

Не секрет, что высокие частоты более эффективны для обмена данными. Однако в России есть свои нюансы, которые делают невозможным использование в некоторых регионах, к примеру, UMTS частоты 2100 мГц.

Причина проста: частота UMTS 2100, которая активно используется для 3G-интернета, на препятствиях быстро садится. Это означает, что качественному сигналу мешают не только расстояния до базовых станций, но также повышенная растительность.

В такой ситуации для 3G-интернета применяется UMTS 900. Волны в этом частотном диапазоне имеют более высокую проникающую способность. В то же время, на такой частоте скорость передачи данных редко достигает 10 мбит/сек. Тем не менее, если учесть, что еще несколько лет назад во многих городах даже подумать не могли об интернет-покрытии, это не так уж и плохо.

На данный момент с популярным UMTS900 показывают отличные результаты Huawei E352 и более стабильный вариант E352b, а также E372, E353, E3131, B970b, B260a, E367, E392, E3276.

LTE: в каких диапазонах будет работать стандарт будущего?

Логичным развитием UMTS стали разработки в 2008-2022 гг. LTE – нового стандарта, цель которого заключается в том, чтобы повысить скорость обработки сигнала и пропускную способность, а в техническом плане – упростить сетевую архитектуру и тем самым сократить время при передаче данных. В России же сеть LTE официально запущена в 2022 году.

Именно технология LTE определяет развитие в нашей стране мобильного интернета нового поколения – 4G. Это означает доступ к онлайн-трансляциям, быстрой передаче файлов большого объема и другим преимуществом современного интернета.

На данный момент 4G интернет поддерживается стандартами LTE 800, LTE 1800, LTE 2600, при чем используются протоколы LTE Cat.4, Cat.5, Cat.6. Это позволяет в теории получить скорость передачи данных до 100 Мбит/с на отдаче и до 50 Мбит/с на приеме.

Высокие частоты LTE становятся идеальным решением для регионов, где плотность населения достаточно высокая и где такая скорость передачи данных очень важна. К ним относятся, например, крупные промышленные города. Тем не менее, если все операторы станут работать только в диапазоне LTE 2600 – моментально возникнет проблема с покрытием радиосигнала.

Сейчас воспользоваться преимуществами технологии 4G могут жители Москвы, Санкт-Петербурга, Краснодара, Новосибирска, Сочи, Уфы и Самары. На территории России Yota стала одним из первых операторов, которые развивали четвертое поколение мобильных стандартов. Теперь к ним присоединились и такие крупные операторы, как Мегафон и МТС.

Оптимальным сегодня считается развитие LTE 1800: эта частота является более экономичной и позволяет выйти на рынок новым компаниям, которые предлагают услуги мобильной связи. Еще дешевле строить сети на частоте 800 МГц. Таким образом, можно предугадать, что именно LTE 800 и LTE 1800 будут наиболее популярными среди операторов и, соответственно, у нас с вами.

Частоты LTE различных мобильных операторов

— Мегафон: частоты LTE 742,5-750 МГц / 783,5-791 МГц, 847-854,5 МГц / 806-813,5 МГц, 2530-2540 МГц / 2650-2660 МГц, 2570-2595 МГц (лицензия на Москву и Московскую область);

— МТС: частоты LTE 720—727,5 MHz / 761—768,5 МГц, 839,5-847 МГц / 798,5-806 МГц, 1710-1785 МГц / 1805-1880 МГц, 2540-2550 МГц / 2660-2670 МГц, 2595—2620 МГц (лицензия на Москву и Московскую область);

— Билайн: частоты LTE 735-742,5 МГц / 776-783,5 МГц, 854,5-862 МГц / 813,5-821 МГц, 2550-2560 МГц / 2670-2680 МГц.

— Ростелеком: частоты LTE 2560-2570 / 2680-2690 МГц.

— Yota: частоты LTE 2500-2530 / 2630-2650 МГц.

— Теле2: частоты 791-798,5 / 832 — 839,5 МГц.

Усиление сигнала на разных частотах

Когда вы попадаете в зону неуверенного приема сигнала или на большое расстояние отдаляетесь от базовой станции своего оператора, без дополнительной антенны не обойтись.

Направленные антенны UMTS 900 сигнала имеет элементарную комплектацию и позволяют значительно повысить уровень связи. При этом более стабильным становится не только Интернет-соединение, но и качество передачи голоса во время телефонного разговора.

Направленные антенны LTE 800 и антенны LTE 1800 – оптимальный вариант для усиления 4G сигнала в соответствующих частотах. У этих стандартов более высокая проникающая способность и дальность сигнала.

Тем не менее, скорость передачи данных выше у LTE 2600, благодаря чему 80% пользователей в Москве уже перешли на этот стандарт. И покупка антенны LTE 2600 является обязательным условием для тех, кто выбрал 4G LTE 2600 (Мегафон, МТС, Билайн, Ростелеком, Yota), чтобы получить максимальную скорость работы интернета.

Решения от GSM-Репитеры.РУ

LTE 800
Антенны LTE 800МодемыРоутеры  
GSM 900 / UMTS 900
АнтенныРепитеры
GSM 1800 / LTE 1800
Антенны LTE 1800Репитеры 1800МодемыРоутеры
UMTS 2100
Антенны 3GРепитеры 3GМодемы 3GРоутеры 3G
LTE 2600
Антенны 4GРепитеры 4GМодемы 4GРоутеры 4G

Специалисты компании GSM-Репитеры.РУ продолжают исследовать новые технологии на рынке сотовой связи и скоростного интернета. Благодаря этому мы оперативно предоставляем клиентам необходимое оборудования для усиления сигнала.

К вашим услугам в Каталоге – различные варианты антенн и репитеров, которые помогут получить качественный сигнал даже в экстремальных условиях.

UMTS и WCDMA Сетевые технологии

Третье поколение технологий для мобильных сетей добавило много новых функций, помимо типичных возможностей для вызовов и обмена сообщениями более старых сетей 2G. С ними приходит ряд новых терминов, которые могут показаться запутанными. Две из этих технологий — UMTS и WCDMA.

UMTS означает универсальную мобильную телекоммуникационную систему, и она преуспевает в старых сетях GSM. Он значительно увеличивает скорость передачи данных до 45 Мбит / с с активированным HSPA , но большинство развертываний предлагают максимальные скорости 7Mbps , Помимо WCDMA, который является самым популярным радиоинтерфейсом, используемым в мобильных сетях, есть и другие воздушные интерфейсы, которые включают UTRA-TDD HCR и TD-SCDMA.

Специфика обрабатывается WCDMA или Широкополосный множественный доступ с кодовым разделением каналов , который основан на CDMA, конкурирующем стандарте для GSM. Он использует два канала 5 МГц, один для нисходящей линии связи (от базовой станции до мобильного устройства), а другой для восходящей линии связи (от мобильного устройства до базовой станции).

5МГц канал увеличивается в четыре раза по сравнению с каналом 1,25 МГц, используемым старым стандартом CDMA. Повышенной пропускной способности способствуют различные методы мультиплексирования, чтобы увеличить количество пользователей, которые могут быть размещены на канале, одновременно увеличивая общую пропускную способность, которая может быть использована для данных.

Значительное использование WCDMA сделало его синонимом UMTS , При использовании любого термина большинство людей на самом деле ссылаются на то же самое. Использование того или другого широко принято, и не должно быть беспокойств, что вы можете использовать неправильный термин.

Резюме:

Модернизация оборудования с gsm на gprs

  • Мобильная станция (MS) – для доступа к услугам GPRS требуется новая мобильная станция. Эти новые терминалы будут обратно совместимы с GSM для голосовых вызовов. Доступны три типа телефонов. Тип A: GPRS & Речь (одновременно), Тип B: GPRS & Речь (автоматическое переключение), Тип C: GPRS или Речь (ручное переключение).

  • BTS – требуется обновление программного обеспечения на существующем базовом сайте приемопередатчика.

  • BSC – требует обновления программного обеспечения и установки нового оборудования, называемого блоком управления пакетами (PCU). PCU отвечает за обработку уровней управления доступом к среде (MAC) и управления линией радиосвязи (RLC) радиоинтерфейса и уровней BSSGP и сетевых служб интерфейса Gb. На BSC есть один PCU. Интерфейс Gb передает трафик GPRS / EGPRS от SGSN (обслуживающего узла поддержки GPRS) к PCU.

  • Узлы поддержки GPRS (GSN) – развертывание GPRS требует установки новых элементов базовой сети, называемых обслуживающим узлом поддержки GPRS (SGSN) и шлюзом узла поддержки GPRS (GGSN).

  • Базы данных (HLR, VLR и т. Д.). Все базы данных, задействованные в сети, потребуют обновления программного обеспечения для обработки новых моделей вызовов и функций, введенных GPRS.

Мобильная станция (MS) – для доступа к услугам GPRS требуется новая мобильная станция. Эти новые терминалы будут обратно совместимы с GSM для голосовых вызовов. Доступны три типа телефонов. Тип A: GPRS &

BTS – требуется обновление программного обеспечения на существующем базовом сайте приемопередатчика.

BSC – требует обновления программного обеспечения и установки нового оборудования, называемого блоком управления пакетами (PCU). PCU отвечает за обработку уровней управления доступом к среде (MAC) и управления линией радиосвязи (RLC) радиоинтерфейса и уровней BSSGP и сетевых служб интерфейса Gb.

Узлы поддержки GPRS (GSN) – развертывание GPRS требует установки новых элементов базовой сети, называемых обслуживающим узлом поддержки GPRS (SGSN) и шлюзом узла поддержки GPRS (GGSN).

Базы данных (HLR, VLR и т. Д.). Все базы данных, задействованные в сети, потребуют обновления программного обеспечения для обработки новых моделей вызовов и функций, введенных GPRS.

Помехи в совмещенном канале и разделение ячеек

Предполагается, что сотовая система имеет радиус ячейки «R» и расстояние между каналами «D» и размер кластера «N». Поскольку размер ячейки фиксирован, помехи в совмещенном канале не будут зависеть от мощности.

Интерференция Co-chl является функцией «q» = D / R.

Q = коэффициент снижения помех Co-chl.

Более высокое значение «q» означает меньше помех.

Меньшее значение «q» означает сильные помехи.

«Q» также относится к размеру кластера (N), так как q = 3N

q = 3N = D / R

Интерференция Co-chl является функцией «q» = D / R.

Q = коэффициент снижения помех Co-chl.

Более высокое значение «q» означает меньше помех.

Меньшее значение «q» означает сильные помехи.

«Q» также относится к размеру кластера (N), так как q = 3N

q = 3N = D / R

Для разных значений N q –

N =1347912
Q =1.7333.464.585.206.00

Более высокие значения «q»

  • Уменьшает помехи в совмещенном канале,
  • Приводит к более высокому значению «N» больше клеток / кластер,
  • Меньшее количество каналов / ячеек,
  • Меньшая пропускная способность.

Нижние значения «q»

  • Увеличивает внутриканальные помехи,
  • Приводит к снижению значения «n» меньше клеток / кластер,
  • Больше количества каналов / ячеек,
  • Большая пропускная способность.

Обычно N = 4, 7, 12.

Сценарий обновления местоположения

В следующем сценарии обновления местоположения предполагается, что MS входит в новую область местоположения, которая находится под контролем другого VLR (называемого «новым VLR»), чем та, где MS в настоящее время зарегистрирована (упоминается как “старый VLR”). На следующей диаграмме показаны шаги сценария обновления мобильного местоположения.

MS входит в новую область ячейки, прослушивает идентификатор области местоположения (LAI), передаваемый по широковещательному каналу (BCCH), и сравнивает этот LAI с последним LAI (сохраненным в SIM), представляющим последнюю область, где было зарегистрировано мобильное устройство. ,

  • MS обнаруживает, что она вошла в новую область местоположения, и передает сообщение запроса канала по каналу произвольного доступа (RACH).

  • Как только BSS принимает сообщение запроса канала, она выделяет автономный выделенный канал управления (SDCCH) и направляет эту информацию о назначении канала в MS по каналу предоставления доступа (AGCH). Именно через SDCCH MS будет связываться с BSS и MSC.

  • MS передает сообщение запроса обновления местоположения в BSS по SDCCH. В это сообщение включены идентификатор временного мобильного абонента MS (TMSI) и старый абонент области расположения (старый LAI). MS может идентифицировать себя либо со своим IMSI, либо с TMSI. В этом примере мы будем предполагать, что мобильный телефон предоставил TMSI. BSS пересылает сообщение запроса на обновление местоположения в MSC.

  • VLR анализирует LAI, предоставленный в сообщении, и определяет, что полученный TMSI связан с другим VLR (старым VLR). Чтобы приступить к регистрации, необходимо определить IMSI MS. Новый VLR получает идентификатор старого VLR, используя полученный LAI, предоставленный в сообщении запроса на обновление местоположения. Он также просит старый VLR предоставить IMSI для конкретного TMSI.

  • Сценарий обновления-обновления HLR / VLR – это точка, в которой мы готовы сообщить HLR о том, что MS находится под контролем нового VLR и что MS может быть отменена из старого VLR. Этапы обновления фазы HLR / VLR:

    • Новый VLR отправляет сообщение в HLR, информируя его о том, что данный IMSI изменил местоположения и может быть достигнуто путем маршрутизации всех входящих вызовов на адрес VLR, включенный в сообщение.

    • HLR запрашивает старый VLR удалить запись подписчика, связанную с данным IMSI. Запрос подтвержден.

    • HLR обновляет новый VLR с данными абонента (профиль клиента абонентов мобильной связи).

MS обнаруживает, что она вошла в новую область местоположения, и передает сообщение запроса канала по каналу произвольного доступа (RACH).

Как только BSS принимает сообщение запроса канала, она выделяет автономный выделенный канал управления (SDCCH) и направляет эту информацию о назначении канала в MS по каналу предоставления доступа (AGCH). Именно через SDCCH MS будет связываться с BSS и MSC.

MS передает сообщение запроса обновления местоположения в BSS по SDCCH. В это сообщение включены идентификатор временного мобильного абонента MS (TMSI) и старый абонент области расположения (старый LAI). MS может идентифицировать себя либо со своим IMSI, либо с TMSI.

VLR анализирует LAI, предоставленный в сообщении, и определяет, что полученный TMSI связан с другим VLR (старым VLR). Чтобы приступить к регистрации, необходимо определить IMSI MS. Новый VLR получает идентификатор старого VLR, используя полученный LAI, предоставленный в сообщении запроса на обновление местоположения. Он также просит старый VLR предоставить IMSI для конкретного TMSI.

Сценарий обновления-обновления HLR / VLR – это точка, в которой мы готовы сообщить HLR о том, что MS находится под контролем нового VLR и что MS может быть отменена из старого VLR. Этапы обновления фазы HLR / VLR:

Новый VLR отправляет сообщение в HLR, информируя его о том, что данный IMSI изменил местоположения и может быть достигнуто путем маршрутизации всех входящих вызовов на адрес VLR, включенный в сообщение.

HLR запрашивает старый VLR удалить запись подписчика, связанную с данным IMSI. Запрос подтвержден.

HLR обновляет новый VLR с данными абонента (профиль клиента абонентов мобильной связи).

Улучшенная gtpv1-u

Только небольшое, но эффективное улучшение было применено к GTP-U, и для этого не было сочтено необходимым усиливать количество версий протокола. Таким образом, мы все еще ожидаем GTPv1-U, но, по крайней мере, это последняя версия Rel. 8.

Стек протоколов, по сути, такой же, как и для GTPv2-C, только с соответствующими названиями уровней и протоколов. Механизм расширения заголовка остается на месте; это позволяет вставить два элемента при необходимости.

  • UDP-порт источника инициирующего сообщения (два октета);

  • PDU PDU номер – относится к передаче характеристики без потерь; в этом случае пакеты данных должны быть пронумерованы в EPC (два октета).

UDP-порт источника инициирующего сообщения (два октета);

PDU PDU номер – относится к передаче характеристики без потерь; в этом случае пакеты данных должны быть пронумерованы в EPC (два октета).

Улучшение заключается в способности передавать «конечный рынок» в плоскости пользователя. Он используется в процедуре передачи обслуживания между eNodeB и дает указание на то, что путь активируется сразу после пакета данных, например, функция не является необходимой для предварительной версии 8, поскольку GTP-U не заканчивался в радиодоступе узел (то есть не в BS или NodeB) существует только несколько сообщений. GTPv1-U, и они перечислены в таблице выше.

Ясно, что на самом деле очень ограниченный тип передачи сигналов возможен через GTPv1-U (механизмы эха и маркировка конца). Единственное сообщение о том, что передача реальных пользовательских данных имеет тип 255, так называемое сообщение G-PDU; единственная часть информации, которую он несет, после заголовка – это исходный пакет данных от пользователя или внешнего оборудования PDN.

Не все экземпляры туннелей GTP-U перечислены в эталонной архитектуре (которая предназначена для захвата ассоциаций, которые больше не существуют между узлами сети); возможны временные тоннели –

  • Между двумя обслуживающими GW, применимыми для передачи на основе S1, в случае, если услуга перемещена GW;

  • Между двумя SGSN, соответствует предыдущему случаю, но в традиционной сети PS;

  • Между двумя RNC, применимыми для перемещения RNC в сети 3G PS (никакого отношения к EPC, здесь упоминается только для полноты).

Между двумя обслуживающими GW, применимыми для передачи на основе S1, в случае, если услуга перемещена GW;

Между двумя SGSN, соответствует предыдущему случаю, но в традиционной сети PS;

Между двумя RNC, применимыми для перемещения RNC в сети 3G PS (никакого отношения к EPC, здесь упоминается только для полноты).

Шаги на этапе аутентификации

  • Новый VLR отправляет запрос в HLR / AUC (Центр аутентификации), запрашивая «триплеты аутентификации» (RAND, SRES и Kc), доступные для указанного IMSI.

  • AUC, используя IMSI, извлекает ключ аутентификации подписчиков (Ki). Затем AUC генерирует случайное число (RAND), применяет Ki и RAND как к алгоритму аутентификации (A3), так и к ключу шифрования, алгоритм генерации (A8) для создать подписанный ответ аутентификации (SRES) и ключ шифрования (Kc). AUC затем возвращает триплет аутентификации: RAND, SRES и Kc в новый VLR.

  • MSC / VLR сохраняет два параметра Kc и SRES для последующего использования, а затем отправляет сообщение в MS. MS считывает свой ключ аутентификации (Ki) с SIM-карты, применяет принятое случайное число (RAND) и Ki как к своему алгоритму аутентификации (A3), так и к алгоритму генерации ключа шифрования (A8), чтобы создать ответ с подписью аутентификации (SRES) и шифр ключ (Kc). MS сохраняет Kc на потом и будет использовать Kc, когда получит команду для шифрования канала.

  • MS возвращает сгенерированный SRES в MSC / VLR. VLR сравнивает SRES, возвращенный от MS, с ожидаемым SRES, полученным ранее от AUC. Если равен, мобильный телефон проходит аутентификацию. Если неравенство, все действия сигнализации будут прерваны. В этом случае мы будем предполагать, что аутентификация пройдена.

Новый VLR отправляет запрос в HLR / AUC (Центр аутентификации), запрашивая «триплеты аутентификации» (RAND, SRES и Kc), доступные для указанного IMSI.

AUC, используя IMSI, извлекает ключ аутентификации подписчиков (Ki). Затем AUC генерирует случайное число (RAND), применяет Ki и RAND как к алгоритму аутентификации (A3), так и к ключу шифрования, алгоритм генерации (A8) для создать подписанный ответ аутентификации (SRES) и ключ шифрования (Kc). AUC затем возвращает триплет аутентификации: RAND, SRES и Kc в новый VLR.

MSC / VLR сохраняет два параметра Kc и SRES для последующего использования, а затем отправляет сообщение в MS. MS считывает свой ключ аутентификации (Ki) с SIM-карты, применяет принятое случайное число (RAND) и Ki как к своему алгоритму аутентификации (A3), так и к алгоритму генерации ключа шифрования (A8), чтобы создать ответ с подписью аутентификации (SRES)

MS возвращает сгенерированный SRES в MSC / VLR. VLR сравнивает SRES, возвращенный от MS, с ожидаемым SRES, полученным ранее от AUC. Если равен, мобильный телефон проходит аутентификацию. Если неравенство, все действия сигнализации будут прерваны. В этом случае мы будем предполагать, что аутентификация пройдена.

Читайте про операторов:  Мобильный Код 965 - Какой Оператор Связи Регион (Город) Кода

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *