НОУ ИНТУИТ | Лекция | Современные средства и линии связи

Краткие характеристики стандарта 802.16

Таблица
8.4.
Краткие характеристики семейства стандартов 802.16
Название стандарта802.16802.16a802.16e
Дата принятиядекабрь 2001январь 2003середина 2004
Частотный диапазон10-66 ГГц2-11 ГГц2-6 ГГц
Быстродействие32-135 Мбит/с для 28МГц-каналадо 75 Мбит/с для 28МГц-каналадо 15 Мбит/с для 5МГц-канала
МодуляцияQPSK, 16QAM, 64QAMOFDM 256, QPSK, 16QAM, 64QAMOFDM 256, QPSK, 16QAM, 64QAM
Ширина канала20, 25 и 28 МГцРегулируемая 1,5-20МГцРегулируемая 1,5-20МГц
Радиус действия2-5 км7-10 км

макс. радиус 50 км

2-5 км
Условия работыПрямая видимостьРабота на отраженияхРабота на отражениях

Стандарт 802.16е предназначен для мобильных систем. Безопасность в сети обеспечивается с помощью протокола 3-DES.

Подуровень конвергенции ( CS ) размещается поверх уровня МАС. Этот подуровень выполняет следующие функции:

В настоящее время имеются спецификации подуровня конвергенции для асинхронного режима ( АТМ ) и пакетного субуровня конвергенции. Уровень конвергенции АТМ обеспечивает логический интерфейс, между услугами АТМ и сервисами МАС-уровня. Этот уровень осуществляет классификацию и, если требуется, процедуру PHS (подавление заголовков).

При АТМ соединении, которое однозначно идентифицирует пару значений VPI (Virtual Path Identifier) и VCI (Virtual Channel Identifier), для этих целей используется либо виртуальный проход (VP), либо виртуальный канал (VC).

Классификатором является набор критериев, используемых для каждой ячейки, которая попадает на субуровень конвергенции АТМ. В этот набор входит VPI и VCI, а также ссылка на CID (Connection ID).

C одним и тем же CID может работать несколько сессий высокого уровня. Например, несколько пользователей могут взаимодействовать через TCP/IP с несколькими различными сетевыми объектами. Следует при этом помнить, что IP-адреса инкапсулируются в поле данных транспортных пакетов.

Читайте про операторов:  Как работает мобильная связь: соты, стандарты и возможности 5G - Хайтек -

Каждый узел имеет свой 48-битовый МАС-адрес (IEEE Std. 802-2001), который однозначно определяет поставщика оборудования и сам узел (как и в Ethernet). Этот адрес используется в процессе регистрации, чтобы установить соединение для SS. Он также применяется в процессе аутентификации, когда BS и SS идентифицируют друг друга. В процессе инициализации SS устанавливаются три управляющих соединения для каждого направления между SS и BS.

В процессе авторизации в сети узел-кандидат получает 16-битовый идентификатор ( Node ID ), который применяется в дальнейшем во всех операциях. Этот идентификатор используется в сеточном подзаголовке, который следует за общим заголовком кадра.

Для обмена с соседями служит 8-битовый идентификатор канала ( Link ID ). Любой узел присваивает такой идентификатор каждому из осуществляемых соединений и передает его как часть CID (Connection ID – 16 бит) в общем заголовке уникастного сообщения.

CID присваиваются посредством сообщений RNG-RSP и REG-RSP. Все это дает возможность реализовать три различных QoS между SS и BS. 16 битный CID позволяют осуществить до 64К соединений для нисходящего и восходящего каналов.

Классификация пакетов SS и BS содержит несколько классификаторов. Каждый классификатор включает в себя поле приоритета, которое определяет порядок просмотра классификаторов. Если найден классификатор, все параметры которого соответствуют пакету, последний будет переадресован в направлении места назначения.

В сети, в которой используется общая среда, необходим эффективный механизм обеспечения доступа к радиоэфиру.

Нисходящий канал от базовой станции (BS) до пользователя работает по схеме точка-мультиточка. При этом используется многосекционная антенна, позволяющая осуществлять связь с несколькими клиентами одновременно. В этом режиме BS выполняет простую функцию ретранслятора.

Для управления соединениями предусматривается несколько типов примитивов, предназначенных для формирования соединения, его модификации, закрытия и управления передачей данных. Среди этих примитивов содержатся запросы/отклики услуги, подтверждения и индикации.

В противоположном направлении станция пользователя совместно использует восходящий канал к BS на основе запросов. В зависимости от используемого класса услуг SS может быть предоставлена возможность непрерывной передачи или право передачи получается BS после получения запроса от пользователя.

В случае НТ=1 (тип заголовка) место полей Rsv, CI, EKS, Rsv и LEN занимает поле BR. Таблица 8.5.

Значения поля тип для нисходящего канала представлены в таблице 8.6.

Значения поля тип для восходящего канала представлены в таблице 8.7.

Блок данных (PDU) запроса полосы содержит заголовок запроса полосы пропускания и лишен поля данных. Формат заголовка показан на
рис.
8.12.

Запрос полосы имеет следующие свойства:

Поля заголовка запроса полосы определены в таблице. Каждый заголовок кодируются, начиная с полей НТ и ЕС. Кодирование этих полей устроено так, что первый байт МАС-заголовка никогда не должен содержать кода 0xFX. Таблица 8.8.

Могут присутствовать три типа подзаголовков МАС (фрагментации и управления). Если подзаголовки фрагментации и управления присутствуют одновременно, то подзаголовок управления помещается первым. Таблица 8.9.

Описание полей подзаголовка управления представлено в табл. 8.10.

Мобильная сотовая связь

Связь называют мобильной, если источник информации либо ее получатель (или оба) перемещаются в пространстве. Радиосвязь с момента возникновения была мобильной. Первые радиостанции предназначались для связи с подвижными объектами – кораблями. Ведь один из первых приборов радиосвязи А.С.

Долгие годы для осуществления индивидуальной радиосвязи между двумя абонентами требовался свой отдельный канал радиосвязи, работающий на одной частоте. Одновременную радиосвязь по многим каналам можно было бы обеспечить, выделив каждому каналу определенную полоску частот.

Но ведь частоты нужны и для радиовещания, телевидения, радиолокации, радионавигации, военных нужд. Поэтому и число каналов радиосвязи было весьма ограничено. Она использовалась для военных целей, правительственной связи. Так, в автомобилях, которыми пользовались члены политбюро ЦК КПСС, были установлены телефоны мобильной связи.

Устанавливалась они в полицейских машинах и радиотакси. Для того чтобы мобильная связь стала массовой, понадобилась новая идея ее организации. Эту идею в 1947 году высказал Д. Ринг, сотрудник американской компании Bell Laboratories.

Она заключалась в разделении пространства на небольшие участки – соты (или ячейки) радиусом 1-5 километров и в отделении радиосвязи в пределах одной ячейки от связи между ячейками. Это позволяло использовать в разных сотах одни и те же частоты. В центре каждой ячейки предлагалось расположить базовую – приемно-передающую – радиостанцию для обеспечения радиосвязи в пределах ячейки со всеми абонентами.

Каждая сота должна обслуживаться базовым радиопередатчиком с ограниченным радиусом действия и фиксированной частотой. Это дает возможность повторно использовать ту же частоту в других сотах. Во время разговора сотовый радиотелефон соединен с базовой станцией радиоканалом, по которому передается телефонный разговор.

Идея мобильной сотовой связи состоит в том, что, еще не выйдя из зоны действия одной базовой станции, мобильный телефон попадает в зону действия любой соседней вплоть до наружной границы всей зоны сети.

Для этого созданы системы антенн-ретрансляторов, перекрывающих свою “соту” – область поверхности Земли. Чтобы связь была надежной, расстояние между двумя соседними антеннами должно быть меньше радиуса их действия. В городах оно составляет около 500 метров, а в сельской местности – 2-3 км.

Идея мобильной сотовой связи заключалась еще и в применении компьютерного контроля за телефонным сигналом от абонента, когда он переходит от одной сотовой ячейки к другой. Именно компьютерный контроль позволил в течение всего лишь тысячной доли секунды переключать мобильный телефон с одного промежуточного передатчика на другой. Все происходит так быстро, что абонент просто этого не замечает.

Центральной частью системы мобильной связи являются компьютеры. Они отыскивают абонента, находящегося в любой из сот, и подключают его к телефонной сети. Когда абонент перемещается из одной ячейки в другую, они передают абонента с одной базовой станции на другую, а также подключают абонента из “чужой” сотовой сети к “своей”, когда он оказывается в зоне ее действия, – осуществляют роуминг (что по-английски означает “странствие” или “бродяжничество”).

Принципы современной мобильной связи были достижением уже конца 40-х годов. Однако в те времена компьютерная техника была еще на таком уровне, что ее коммерческое применение в системах телефонной связи было затруднено. Поэтому практическое применение сотовой связи стало возможным только после изобретения микропроцессоров и интегральных полупроводниковых микросхем.

Первые сотовые телефоны весили больше килограмма. Сконструировал первый сотовый телефонный аппарат Мартин Купер (фирма Motorola, США). Весил это аппарат 1,15 кг и имел габариты 22,5х12,5х3,75 см (рис. 4.2). На передней панели было расположено 12 клавиш, из них 10 цифровых и две для отправки вызова и прекращения разговора.

Дисплея и дополнительных функций у него не было, т.к. они увеличивают вес аппарата. Аккумулятор позволял общаться 35 минут, но заряжать его приходилось более 10 часов. На крыше 50-этажного здания в Нью-Йорке была смонтирована базовая станция, способная обслуживать не более 30 абонентов и соединять их с наземными линиями связи.

Первым этот телефон взял в руки Мартин Купер весенним утром 3 апреля 1973 года. Он набрал номер Джоэла Энгела, начальника исследовательского отдела Bell Laboratories, и произнес следующие слова: “Представь себе, Джоэл, что я звоню тебе с первого в мире сотового телефона. Он у меня в руках, а я иду по нью-йоркской улице”.

Вес современных сотовых телефонов через 33 года, в 2006 году, составляет всего 70-100 г (рис. 4.3).

В июле 1978 года начала работу Advanced Mobile Phone Service (Усовершенствованная Служба Мобильных Телефонов) или AMPS.

В декабре 1979 года в Токио начала работу первая сотовая сеть связи из 88 базовых станций. В 1984 г. сеть была расширена до масштабов всей Японии.

Эксплуатация первой в Европе системы сотовой связи стандарта NMT-450 (Nordic Mobile Telephone), предназначенной для работы в диапазоне 450 МГц, началась в 1981 году в Швеции, Исландии, Дании, Норвегии, Финляндии и Саудовской Аравии.

Затем началась эксплуатация систем связи того же типа в странах Европы и Юго-Восточной Азии. В 1985 году на базе этого стандарта был разработан стандарт NMT-900 диапазона 900 МГц, позволивший увеличить абонентскую емкость системы связи. Подобные стандарты были введены в США, Франции и Великобритании.

Однако все эти стандарты являются аналоговыми и относятся к первому поколению систем сотовой связи. В них используется аналоговый способ передачи информации с помощью частотной (ЧМ) или фазовой (ФМ) модуляции – как в обычных радиостанциях. Этот способ имеет ряд существенных недостатков, главными из которых являются возможность прослушивания разговоров другими абонентами и невозможность борьбы с замиранием сигналов при передвижении абонента и под влиянием ландшафта и зданий. Перегруженность частотных диапазонов вызывала помехи при разговорах.

Поэтому к концу 1980-х годов началось создание второго поколения систем сотовой связи, основанных на базе цифровых методов обработки сигналов. В 1990 году был разработан стандарт GSM-900 для диапазона 900 МГц, который расшифровывается как Global System for Mobile Communications.

В России аналоговые системы сотовой связи на основе стандарта NMT-450 появились с опозданием на 10 лет, но зато цифровые системы на основе стандарта GSM – с опозданием только на 3 года. Стандарты NMT и GSM утверждены в нашей стране в качестве федеральных.

В Москве активнее всего развиваются сотовые сети на основе цифрового стандарта GSM, а в регионах – аналоговые сети. Системы стандарта GSM в России наиболее активно продвигают на рынке три оператора – МТС, “Билайн” и “МегаФон”. Сегодня на основе этого стандарта работают уже более 70% всех сотовых телефонов в мире.

России пошло на пользу опоздание с внедрением сотовой связи. У нас был сразу принят цифровой стандарт GSM. Многие современные сотовые телефоны оснащены возможностью высокоскоростного доступа в Интернет по стандарту GPRS (General Packet Radio Service).

Дмитрий Борисович Зимин (год.рожд. 1933,) — основатель и Почетный Президент компании “Вымпел-Коммуникации” (торговая марка — “Билайн”), основатель Фонда некоммерческих программ “Династия”.

Начав в старших классах средней школы заниматься радиотехникой, вместе с учителем физики С. М. Алексеевым написал книгу “Школьная УКВ-радиостанция”, которая позже была опубликована.

В 1950 году Д. Б. Зимин закончил радиотехнический факультет Московского авиационного института в 1957 году. По окончании поступил на должность инженера в проблемную лабораторию при кафедре профессора М. С. Неймана.

В 1962 году Зимин был приглашен на работу в Радиотехнический институт Академии наук СССР, возглавляемый академиком А. Л. Минцем.

Более 35 лет Д. Б. Зимин занимал руководящие посты в Радиотехническом институте (позднее РТИ имени А. Л. Минца). Он работал начальником лаборатории, затем 14 лет был начальником научного отдела, а позже — директором Центра по разработке радиотехнического оборудования.

В 1963 году Зимин защитил кандидатскую диссертацию, а в 1964 году – докторскую диссертацию.

После резкого сокращения оборонных заказов в начале 1990-х годов Д. Б. Зимин принял активное участие в реализации идей конверсии с целью создания рабочих мест для высококвалифицированных специалистов военно-промышленного комплекса. Как заместителю главного конструктора ему была поручена работа по развертыванию в институте конверсионной тематики.

6 марта 1991 года было зарегистрировано малое предприятие КБ “Импульс”, организованное Д. Б. Зиминым в рамках конверсионной программы. Первой его разработкой стала система спутникового телевидения. Следующим проектом была система кабельного телевидения — АС-600. Она также была запущена в серию и уже принесла небольшой доход.

В 1991 году внимание Д. Б. Зимина привлекла новая задача — создание подвижной сухопутной связи общего назначения (официальное наименование сотовой телефонной связи в тот период). Проектную разработку системы сотовой связи он начал в 1991 году с организации группы технических экспертов внутри Радиотехнического института. На начальном этапе партнером Д. Б. Зимина была американская фирма “Plexis”.

Для производства и эксплуатации оборудования сотовой связи общего назначения по инициативе Д. Б. Зимина в 1992 году было создано акционерное общество “Вымпел-Коммуникации” (АО “ВымпелКом”), где Зимин стал Президентом и Генеральным директором. Была запущена в действие и заработала пилотная станция мобильной связи стандарта AMPS, покрывавшая Садовое кольцо и имевшая начальную емкость около 200 абонентов.

Под руководством Д. Б. Зимина ОАО “ВымпелКом” внесло большой вклад в развитие сотовой связи в России, организовав работы, приведшие к принятию в России стандартов мобильной связи AMPS/D-AMPS и GSM-1800 и выходу услуг сотовой связи на рынок массового потребителя.

В мае 2001 года, когда абонентская база “ВымпелКома” превысила миллион абонентов, компания вышла на прибыльность и в состав акционеров вошла группа “Альфа”, Д. Б. Зимин добровольно оставил пост Генерального директора и стал Почетным Президентом ОАО “ВымпелКом”.

В настоящее время Д. Б. Зимин занимается общественной работой и благотворительностью. Он принимает участие в работе ряда университетов и общественных организаций.

С 2002 года Д. Б. Зимин — основатель и президент благотворительного фонда “Династия”, а с 2006 г. – член наблюдательного совета “Династии”, основными задачами которого являются поддержка и популяризация российской фундаментальной науки.

Доли сотовых операторов в общероссийской абонентской базе в 2009 году: лидирует по этому показателю “МТС” (33%), за ней следует компания “ВымпелКом” (25%), на третьем месте “МегаФон” (24%), четвертую позицию занимает TELE2 (7%). Остальные операторы делят между собой 11% абонентской базы.

В США услугами сотовой телефонной связи пользуются примерно 81 миллион человек, что составляет более 31 процента от общей численности населения страны в 260 миллионов.

В странах Европы, включая Россию, этот показатель выше – примерно 33,8% всего населения. Максимальный в мире показатель – в Финляндии: 63,5% населения страны владеют сотовыми телефонами.

Число пользователей сотовой связи в России в 2000 г. составляло 3,3 млн человек, в 2001 г. – 7,8 млн, в 2002 г. – 17,7 млн, в 2003 г. – 32 млн. При этом уровень проникновения сотовой связи на конец октября 2003 г. в Москве и Московской области составляет 63%, в Петербурге и Ленинградской области – 51%, а в других регионах России – 22%.

Персональная сотовая мобильная связь пользуется все большей популярностью, особенно у молодежи. Общее число ее пользователей в мире превышает 600 миллионов абонентов.

Важным преимуществом мобильной сотовой связи является возможность пользоваться ею вне общей зоны своего оператора – роуминг. Для этого различные операторы договариваются между собой о взаимной возможности пользования своим зонами для пользователей. Абонент, покидая общую зону своего оператора, автоматически переключается на зоны других операторов даже при перемещении из одной страны в другую, например, из России в Германию или во Францию.

Ведущие компании-производители сотовых телефонов ориентируются на единый европейский стандарт – GSM. Именно поэтому их аппаратура технически совершенна, но относительно недорога. Ведь они могут позволить себе выпускать огромные партии телефонов, находящих сбыт.

Удобным дополнением к сотовому телефону стала система коротких сообщений SMS (Short Message Service). Она используется для передачи коротких сообщений прямо на телефон современной цифровой системы GSM без применения дополнительного оборудования, только с помощью цифровой клавиатуры и экранчика-дисплея сотового телефона.

Прием SMS-сообщений производится также на цифровой дисплей, которым оснащен любой сотовый телефон. SMS можно использовать в тех случаях, когда обычный телефонный разговор не является самым удобным видом связи (например, в шумном переполненном поезде).

Можно послать знакомому по SMS свой номер телефона. Из-за низкой стоимости SMS является альтернативой телефонному разговору. Максимальная величина SMS-сообщения составляет 160 символов. Посылать его можно несколькими способами: звонком в специальную службу, а также с помощью своего телефона GSM с функцией отправки, с помощью Интернета.

Но и система SMS – не последнее слово в сотовой связи. В наиболее современных сотовых телефонах (например, фирмы Nokia) появилась функция Chat (в русской версии – “диалог”). С ее помощью можно общаться в режиме реального времени с другими владельцами сотовых телефонов, как это делается в Интернете.

По существу, это новый вид обмена посланиями SMS. Для этого вы составляете послание своему собеседнику и отправляете его. Текст вашего послания появляется на дисплеях обоих сотовых телефонов – вашего и вашего собеседника. Потом он вам отвечает и на дисплеях высвечивается его послание.

Появились и сотовые телефоны с поддержкой высокоскоростного доступа в Интернет через GPRS (General Packet Radio Service) – стандарт пакетной передачи данных по радиоканалам, при котором телефону не нужно “дозваниваться”: аппарат постоянно поддерживает соединение, отправляет и принимает пакеты данных. Выпускаются и сотовые телефонные аппараты со встроенной цифровой фотокамерой.

По данным исследовательской компании Informa Telecoms & Media (ITM)
число пользователей мобильной связи в мире в 2007 году составляет 3,3 млрд. человек.

Наконец, самые сложные и дорогие аппараты – это смартфоны и коммуникаторы, сочетающие возможности сотового телефона и карманного компьютера.

Сообщение команды de/re (dreg-cmd)

Сообщение DREG-CMD отправляется базовой станцией по базовому CID SS, чтобы изменить ее состояние доступа. По получении DREG-CMD SS выполнит операцию, предписываемую присланным кодом операции. Тип управления МАС для данного сообщения представлен в табл. 8.33.

Коды операции и их значения представлены в табл. 8.34.

Несколько МАС-PDU могут быть переданы вместе как по восходящему, так и по нисходящему каналам. МАС-PDU управляющих сообщений, пользовательских данных, запросов полосы могут быть пересланы за одну передачу. Схема объединения иллюстрируется на
рис.
8.17.

МАС SDU может быть разделен между одним или более МАС PDU. Это позволяет более эффективно использовать доступную полосу пропускания с учетом требующегося уровня QoS. Фрагментация может быть реализована по инициативе BS или SS. Это определяется на базе формирования соединения.

В случае включения режима упаковки, МАС может упаковывать по несколько MAC SDU в один MAC PDU. В режиме упаковки используется атрибут соединения, который говорит о том, используются ли пакеты постоянной длины или переменной.

Для улучшения эффективности процесса запрос-предоставление предусмотрен механизм диспетчеризации. Путем задания параметров диспетчеризации и QoS BS может получить требующуюся пропускную способность и время отклика для восходящего канала.

Базовые виды услуг перечислены в таблице 8.35, это UGS (Unsolicited Grant Service), сервис запросов реального времени rtPS (Real-Time Polling Service), nrtPS (Non.-REAL-Time Polling Service) и сервис наилучшего возможного BE (Best Effort). Каждый вид сервиса приспособлен для определенного типа потока данных.

Заметим, что каждой SS приписано три CID для целей отправки и получения управляющих сообщений. Используется три соединения, чтобы обеспечить дифференцированные уровни QoS для разных соединений, транспортирующих управляющий трафик МАС. Увеличение или уменьшение требований к полосе необходимо для всех сервисов, кроме соединений с постоянной скоростью передачи (например, несжимаемый UGS).

Когда SS нужно запросить полосу для конкретного соединения с ВЕ диспетчеризацией, она посылает сообщение BS, содержащее требование немедленного соединения DAMA (Demand Assigned Multiple Access). QoS соединения определяется в процессе формирования и обеспечивается BS.

Для получения нужной полосы восходящего канала SS использует запросы, направляемые ею к BS. Так как профайл восходящего канала может меняться динамически, все запросы полосы должны выражаться в байтах, которые необходимы для передачи МАС-заголовка и поля данных, но не должны учитывать издержки физического уровня. Такие запросы могут быть посланы в период запроса IE или любого кластера предоставления данных типа IE.

В зависимости от характера запроса полосы существует два режима работы SS: GPC (Grant per Connection) и GPSS (Grant per Subscriber Station). В первом случае BS предоставляет полосу конкретно каждому соединению, в то время как во втором случае полоса предоставляется всем соединениям SS.

В последнем случае (GPSS) можно использовать меньшую суммарную полосу пропускания, а продвинутая SS может перераспределять полученную от BS полосу. Такой алгоритм удобен для решения задач реального времени, когда требуется более быстрый отклик.

Запрос ( polling ) является процессом, с помощью которого базовая станция резервирует SS полосу. Это резервирование может быть выполнено для отдельной SS или группы станций. Резервирование для группы соединений и/или SS в действительности определяет информационный элемент (IE) соединения при запросе полосы.

Когда SS опрашиваются индивидуально, никакого сообщения не посылается, просто производится резервирование для SS в восходящем канале, достаточное для реагирования на запросы полосы. Если SS не нуждается в полосе, она возвращает байт 0xFF. Станции SS, работающие в режиме GPSS, при наличии активного UGS-соединения с достаточной полосой индивидуально опрашиваться не будут, если только они не выставили бит PM (Poll Me) в заголовке пакета UGS-соединения. Это экономит полосу на опросе всех SS.

Если имеется недостаточная полоса пропускания для индивидуального опроса неактивных SS, некоторые SS могут опрашиваться в составе мультикаст-групп или с привлечением широковещательного опроса Определенные CID зарезервированы для мультикаст-групп и для широковещательных сообщений.

МАС-протокол поддерживает несколько дуплексных технологий. Выбор дуплексной техники может повлиять на определенные параметры уровня PHY, а также на перечень поддерживаемых возможностей. На МАС-уровне поддерживаются кадровые и бескадровые спецификации PHY.

Для бескадрового режима PHY значение интервала диспетчеризации выбираются МАС. При бескадровой FDDPHY восходящий и нисходящий каналы размещаются на разных частотах, так что каждая SS может осуществлять прием и передачу одновременно.

Оба эти канала не используют фиксированной длины кадров. В такой системе нисходящий канал находится всегда во включенном состоянии, и все SS слушают его. Трафик передается широковещательно, используя мультиплексирование по времени (TDM).

В кадровой (кластерной) системе FDD (Frequency Division Duplex) восходящий и нисходящий каналы размещаются на разных частотах, а нисходящие данные передаются в виде кластеров (bursts). Для обоих направлений обмена используются кадры фиксированной длины. Это помогает использовать разные типы модуляции. При этом могут применяться полнодуплексные и полудуплексные SS.

В режиме TDD (Time Division Duplexing) восходящий и нисходящий каналы используют одну и ту же частоту. TDD -кадр имеет фиксированную длительность и содержат субкадры для восходящего и нисходящего каналов.

Синхронизация восходящего канала базируется на эталонных временных метках восходящего канала, которые задаются счетчиком, инкрементируемым в 16 раз чаще, чем частота PS. Это позволяет часам SS быть хорошо синхронизованными с BS.

Карта резервирования полосы восходящего канала использует в качестве модулей минидомены (minislot). Размер минидомена определяется как число физических доменов PHY PS и содержится в дескрипторе восходящего канала. Один минидомен содержит n PS, где n — целое число из интервала 0-255.

Информация в DL-MAP относится к текущему кадру, то есть к кадру, в котором она доставлена. Информация, доставляемая в UL-MAC, относится к временному интервалу, начинающемуся в момент резервирования (измеряется от начала поученного кадра и до конца последнего зарезервированного минидомена).

Пустые IE указывают на паузы в передаче по восходящему каналу. Станции SS не могут осуществлять передачу в это время. Данный вид синхронизации используется как для TDD, так и для FDD. Вариант TDD показан на
рис.
8.

В бескадровых системах PHY DL-MAP содержит только временные метки восходящего канала и не определяет, какую информацию следует передавать. Все SS постоянно ищут нисходящий сигнал для любого сообщения, которое к ним адресовано.

Сообщение UL-MAP содержит временную метку, которая указывает на первый минидомен, который определяет мэпинг (соответствие). Задержка от конца UL-MAP до начала первого интервала в восходящем канале определенная таблицей соответствия, будет больше максимума RTT плюс время обработки, необходимое SS (см.
рис.
8.22).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *